BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27095694)

  • 1. Arginine kinase from Myzostoma cirriferum, a basal member of annelids.
    Yano D; Mimura S; Uda K; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Aug; 198():73-8. PubMed ID: 27095694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the diverse array of phosphagen systems present in annelids.
    Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase.
    Wickramasinghe S; Uda K; Nagataki M; Yatawara L; Rajapakse RP; Watanabe Y; Suzuki T; Agatsuma T
    Exp Parasitol; 2007 Oct; 117(2):124-32. PubMed ID: 17574244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine Kinases from the Precious Corals Corallium rubrum and Paracorallium japonicum: Presence of Two Distinct Arginine Kinase Gene Lineages in Cnidarians.
    Matsuo T; Yano D; Uda K; Iwasaki N; Suzuki T
    Protein J; 2017 Dec; 36(6):502-512. PubMed ID: 29022133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K; Ellington WR; Suzuki T
    Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel arginine kinase with substrate specificity towards D-arginine.
    Uda K; Suzuki T
    Protein J; 2007 Aug; 26(5):281-91. PubMed ID: 17294143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early evolution of the phosphagen kinases--insights from choanoflagellate and poriferan arginine kinases.
    Conejo M; Bertin M; Pomponi SA; Ellington WR
    J Mol Evol; 2008 Jan; 66(1):11-20. PubMed ID: 18064398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine kinases from the marine feather star Tropiometra afra macrodiscus: The first finding of a prenylation signal sequence in metazoan phosphagen kinases.
    Chouno K; Yano D; Uda K; Fujita T; Iwasaki N; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Sep; 187():55-61. PubMed ID: 25964010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of phosphagen kinases in annelids: The first sequence report for a putative opheline kinase.
    Yano D; Uda K; Nara M; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2022 Jan; 257():110662. PubMed ID: 34371154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups.
    Tanaka K; Uda K; Shimada M; Takahashi K; Gamou S; Ellington WR; Suzuki T
    J Mol Evol; 2007 Nov; 65(5):616-25. PubMed ID: 17932618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and catalytic properties of an arginine kinase from the nematode Ascaris suum.
    Nagataki M; Uda K; Jarilla BR; Tokuhiro S; Wickramasinghe S; Suzuki T; Blair D; Agatsuma T
    J Helminthol; 2012 Sep; 86(3):276-86. PubMed ID: 21781373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of phosphagen kinase (III). Amino acid sequence of arginine kinase from the shrimp Penaeus japonicus.
    Furukohri T; Okamoto S; Suzuki T
    Zoolog Sci; 1994 Apr; 11(2):229-34. PubMed ID: 7765044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica.
    Suzuki T; Tomoyuki T; Uda K
    FEBS Lett; 2003 Jan; 533(1-3):95-8. PubMed ID: 12505165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of phosphagen kinase. Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Suzuki T; Kawasaki Y; Furukohri T
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):301-6. PubMed ID: 9359868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.