These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 27096110)
1. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector. Gaigalas AK; Wang L J Res Natl Inst Stand Technol; 2008; 113(1):17-28. PubMed ID: 27096110 [TBL] [Abstract][Full Text] [Related]
2. Absolute quantum yield measurement of powder samples. Moreno LA J Vis Exp; 2012 May; (63):e3066. PubMed ID: 22617474 [TBL] [Abstract][Full Text] [Related]
3. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Suzuki K; Kobayashi A; Kaneko S; Takehira K; Yoshihara T; Ishida H; Shiina Y; Oishi S; Tobita S Phys Chem Chem Phys; 2009 Nov; 11(42):9850-60. PubMed ID: 19851565 [TBL] [Abstract][Full Text] [Related]
4. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector. Gaigalas AK; Wang L; Karpiak V; Zhang YZ; Choquette S J Res Natl Inst Stand Technol; 2012; 117():202-15. PubMed ID: 26900524 [TBL] [Abstract][Full Text] [Related]
5. Measurement of Scattering and Absorption Cross Sections of Microspheres for Wavelengths between 240 nm and 800 nm. Gaigalas AK; Wang L; Choquette S J Res Natl Inst Stand Technol; 2013; 118():1-14. PubMed ID: 26401421 [TBL] [Abstract][Full Text] [Related]
6. Measurement of Scattering and Absorption Cross Sections of Dyed Microspheres. Gaigalas AK; Choquette S; Zhang YZ J Res Natl Inst Stand Technol; 2013; 118():15-28. PubMed ID: 26401422 [TBL] [Abstract][Full Text] [Related]
7. Measurement of Absorption and Scattering With an Integrating Sphere Detector: Application to Microalgae. Gaigalas AK; He HJ; Wang L J Res Natl Inst Stand Technol; 2009; 114(2):69-81. PubMed ID: 27504214 [TBL] [Abstract][Full Text] [Related]
8. Photophysics on surfaces: determination of absolute fluorescence quantum yields from reflectance spectra. Mirenda M; Lagorio MG; San Román E Langmuir; 2004 Apr; 20(9):3690-7. PubMed ID: 15875401 [TBL] [Abstract][Full Text] [Related]
9. Goodbye to Quinine in Sulfuric Acid Solutions as a Fluorescence Quantum Yield Standard. Nawara K; Waluk J Anal Chem; 2019 Apr; 91(8):5389-5394. PubMed ID: 30907575 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Würth C; Lochmann C; Spieles M; Pauli J; Hoffmann K; Schüttrigkeit T; Franzl T; Resch-Genger U Appl Spectrosc; 2010 Jul; 64(7):733-41. PubMed ID: 20615286 [TBL] [Abstract][Full Text] [Related]
11. Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument. Hasebe N; Suzuki K; Horiuchi H; Suzuki H; Yoshihara T; Okutsu T; Tobita S Anal Chem; 2015 Feb; 87(4):2360-6. PubMed ID: 25654558 [TBL] [Abstract][Full Text] [Related]
12. Compact optical detector utilizing light emitting diodes, 50 nL L-shaped silica capillary cell and CCD spectrometer for simultaneous multi-wavelength monitoring of absorbance and fluorescence in microcolumn liquid chromatography. Šesták J; Planeta J; Kahle V Anal Chim Acta; 2020 May; 1112():80-91. PubMed ID: 32334686 [TBL] [Abstract][Full Text] [Related]
13. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. Porrès L; Holland A; Pålsson LO; Monkman AP; Kemp C; Beeby A J Fluoresc; 2006 Mar; 16(2):267-72. PubMed ID: 16477506 [TBL] [Abstract][Full Text] [Related]
14. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards. Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112 [TBL] [Abstract][Full Text] [Related]
15. A new approach to the old problem: Inner filter effect type I and II in fluorescence. Kasparek A; Smyk B Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():297-303. PubMed ID: 29558729 [TBL] [Abstract][Full Text] [Related]
16. A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms. Hervey JRD; Bombelli P; Lea-Smith DJ; Hulme AK; Hulme NR; Rullay AK; Keighley R; Howe CJ Photosynth Res; 2022 Jan; 151(1):61-69. PubMed ID: 34390453 [TBL] [Abstract][Full Text] [Related]
17. Uncertainty evaluation of photoluminescence quantum yield measurement in an integrating hemisphere-based instrument. Yoo J; Gene J; Kim J; Park SN; Lim SC; Jeong MS; Lee TG; Park S Appl Opt; 2023 Jun; 62(18):4805-4812. PubMed ID: 37707255 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification. Pauli J; Güttler A; Schneider T; Würth C; Resch-Genger U Anal Chem; 2023 Apr; 95(13):5671-5677. PubMed ID: 36920895 [TBL] [Abstract][Full Text] [Related]
19. Technical brief: Pump-probe paradigm in an integrating cavity to study photodecomposition processes. Gonzalez-Fernandez F; Betts-Obregon B; Tsin AT; DeSa RJ Mol Vis; 2016; 22():953-8. PubMed ID: 27559291 [TBL] [Abstract][Full Text] [Related]
20. Relative and absolute determination of fluorescence quantum yields of transparent samples. Würth C; Grabolle M; Pauli J; Spieles M; Resch-Genger U Nat Protoc; 2013 Aug; 8(8):1535-50. PubMed ID: 23868072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]