These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27096116)

  • 1. Accelerating Scientific Discovery Through Computation and Visualization III. Tight-Binding Wave Functions for Quantum Dots.
    Sims JS; George WL; Griffin TJ; Hagedorn JG; Hung HK; Kelso JT; Olano M; Peskin AP; Satterfield SG; Terrill JD; Bryant GW; Diaz JG
    J Res Natl Inst Stand Technol; 2008; 113(3):131-42. PubMed ID: 27096116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Scientific Discovery Through Computation and Visualization.
    Sims JS; Hagedorn JG; Ketcham PM; Satterfield SG; Griffin TJ; George WL; Fowler HA; Am Ende BA; Hung HK; Bohn RB; Koontz JE; Martys NS; Bouldin CE; Warren JA; Feder DL; Clark CW; Filla BJ; Devaney JE
    J Res Natl Inst Stand Technol; 2000; 105(6):875-94. PubMed ID: 27551642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Scientific Discovery Through Computation and Visualization II.
    Sims JS; George WL; Satterfield SG; Hung HK; Hagedorn JG; Ketcham PM; Griffin TJ; Hagstrom SA; Franiatte JC; Bryant GW; Jaskólski W; Martys NS; Bouldin CE; Simmons V; Nicolas OP; Warren JA; Am Ende BA; Koontz JE; Filla BJ; Pourprix VG; Copley SR; Bohn RB; Peskin AP; Parker YM; Devaney JE
    J Res Natl Inst Stand Technol; 2002; 107(3):223-45. PubMed ID: 27446728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parallel method for accelerating visualization and interactivity for vector tiles.
    Hu W; Li L; Wu C; Zhang H; Zhu H
    PLoS One; 2019; 14(8):e0221075. PubMed ID: 31415631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dots for biomedical applications.
    Signore M; Liotta LA; Maria RD; Petricoin EF
    Expert Opin Med Diagn; 2008 Mar; 2(3):315-22. PubMed ID: 23495661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments.
    Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM
    PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Based Drug Discovery Accelerated by Many-Core Devices.
    Feinstein W; Brylinski M
    Curr Drug Targets; 2016; 17(14):1595-1609. PubMed ID: 26758669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dots in the Therapy: Current Trends and Perspectives.
    Pohanka M
    Mini Rev Med Chem; 2017; 17(8):650-656. PubMed ID: 28117021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing.
    Ge H; Wang Y; Li C; Chen N; Xie Y; Xu M; He Y; Gu X; Wu R; Gu Q; Zeng L; Xu J
    J Chem Inf Model; 2013 Oct; 53(10):2757-64. PubMed ID: 24001302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon quantum dots: fine-tuning to maturity.
    Morello A
    Nanotechnology; 2015 Dec; 26(50):502501. PubMed ID: 26584678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.
    Choi H; Choi W; Quan TM; Hildebrand DG; Pfister H; Jeong WK
    IEEE Trans Vis Comput Graph; 2014 Dec; 20(12):2407-16. PubMed ID: 26356955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast polyenergetic forward projection for image formation using OpenCL on a heterogeneous parallel computing platform.
    Zhou L; Clifford Chao KS; Chang J
    Med Phys; 2012 Nov; 39(11):6745-56. PubMed ID: 23127068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
    Karthikeyan M; Vyas R
    Comb Chem High Throughput Screen; 2015; 18(6):528-43. PubMed ID: 26138575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commercial applications of quantum computing.
    Bova F; Goldfarb A; Melko RG
    EPJ Quantum Technol; 2021; 8(1):2. PubMed ID: 33569545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance computing, high-speed networks, and configurable computing environments: progress toward fully distributed computing.
    Johnston WE; Jacobson VL; Loken SC; Robertson DW; Tierney BL
    Crit Rev Biomed Eng; 1992; 20(5-6):315-54. PubMed ID: 1486779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates.
    Kaul Z; Yaguchi T; Kaul SC; Hirano T; Wadhwa R; Taira K
    Cell Res; 2003 Dec; 13(6):503-7. PubMed ID: 14728808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoinformatics and DNA-based computing: catalyzing nanomedicine.
    Maojo V; Martin-Sanchez F; Kulikowski C; Rodriguez-Paton A; Fritts M
    Pediatr Res; 2010 May; 67(5):481-9. PubMed ID: 20118825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.