BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27096146)

  • 1. Oxidation of Plasmalogen, Low-Density Lipoprotein and RAW 264.7 Cells by Photoactivatable Atomic Oxygen Precursors.
    Bourdillon MT; Ford BA; Knulty AT; Gray CN; Zhang M; Ford D; McCulla RD
    Photochem Photobiol; 2014; 90(2):386-93. PubMed ID: 27096146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase-derived reactive chlorinating species from human monocytes target plasmalogens in low density lipoprotein.
    Thukkani AK; Albert CJ; Wildsmith KR; Messner MC; Martinson BD; Hsu FF; Ford DA
    J Biol Chem; 2003 Sep; 278(38):36365-72. PubMed ID: 12869568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Low-Density Lipoprotein Oxidation by Hydrophilic O(
    Maness PF; Cone GW; Ford DA; McCulla RD
    Photochem Photobiol; 2023; 99(6):1412-1419. PubMed ID: 36943169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmalogens: targets for oxidants and major lipophilic antioxidants.
    Engelmann B
    Biochem Soc Trans; 2004 Feb; 32(Pt 1):147-50. PubMed ID: 14748736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmalogens and their oxidative degradation products in low and high density lipoprotein.
    Jira W; Spiteller G
    Chem Phys Lipids; 1996 Mar; 79(2):95-100. PubMed ID: 8640904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry.
    Zemski Berry KA; Murphy RC
    Antioxid Redox Signal; 2005; 7(1-2):157-69. PubMed ID: 15650405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin.
    Firth CA; Crone EM; Flavall EA; Roake JA; Gieseg SP
    Biochim Biophys Acta; 2008 Jun; 1783(6):1095-101. PubMed ID: 18342632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of plasmalogens produces highly effective modulators of macrophage function.
    Heinle H; Gugeler N; Felde R; Okech D; Spiteller G
    Z Naturforsch C J Biosci; 2000; 55(1-2):115-20. PubMed ID: 10739110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The appearance, disappearance and reappearance of plasmalogens in evolution.
    Goldfine H
    Prog Lipid Res; 2010 Oct; 49(4):493-8. PubMed ID: 20637230
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Petroff JT; Isor A; Chintala SM; Albert CJ; Franke JD; Weinstein D; Omlid SM; Arnatt CK; Ford DA; McCulla RD
    RSC Adv; 2020 Jul; 10(44):26553-26565. PubMed ID: 35519784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages.
    Yen GC; Duh PD; Huang DW; Hsu CL; Fu TY
    Food Chem Toxicol; 2008 Jan; 46(1):175-85. PubMed ID: 17804140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.
    Choi SH; Gonen A; Diehl CJ; Kim J; Almazan F; Witztum JL; Miller YI
    Autophagy; 2015; 11(5):785-95. PubMed ID: 25946330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification.
    Kapiotis S; Hermann M; Exner M; Sturm BN; Scheiber-Mojdehkar B; Goldenberg H; Kopp S; Chiba P; Gmeiner BM
    Free Radic Res; 2005 Nov; 39(11):1225-31. PubMed ID: 16298749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis.
    Ismael FO; Proudfoot JM; Brown BE; van Reyk DM; Croft KD; Davies MJ; Hawkins CL
    Arch Biochem Biophys; 2015 May; 573():40-51. PubMed ID: 25795019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative modification of lipoproteins.
    Arai H
    Subcell Biochem; 2014; 77():103-14. PubMed ID: 24374922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: disparate utilization of sodium halides in the production of alpha-halo fatty aldehydes.
    Albert CJ; Crowley JR; Hsu FF; Thukkani AK; Ford DA
    J Biol Chem; 2002 Feb; 277(7):4694-703. PubMed ID: 11836259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite.
    Thomas SR; Davies MJ; Stocker R
    Chem Res Toxicol; 1998 May; 11(5):484-94. PubMed ID: 9585479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human macrophages limit oxidation products in low density lipoprotein.
    Hultén LM; Ullström C; Krettek A; van Reyk D; Marklund SL; Dahlgren C; Wiklund O
    Lipids Health Dis; 2005 Mar; 4():6. PubMed ID: 15745457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-Activated Generation of Reactive Oxygen Species from Heterocyclic N-Oxides under Aerobic and Anaerobic Conditions and Its Relevance to Hypoxia-Selective Prodrugs.
    Shen X; Gates KS
    Chem Res Toxicol; 2019 Mar; 32(3):348-361. PubMed ID: 30817135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauging the significance of atomic oxygen [O(3P)] in sulfoxide photochemistry. A method for hydrocarbon oxidation.
    Thomas KB; Greer A
    J Org Chem; 2003 Mar; 68(5):1886-91. PubMed ID: 12608806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.