These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27096634)

  • 1. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field.
    Topp E; Renaud J; Sumarah M; Sabourin L
    Sci Total Environ; 2016 Aug; 562():136-144. PubMed ID: 27096634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group determination of 14-membered macrolide antibiotics and azithromycin using antibodies against common epitopes.
    Galvidis I; Lapa G; Burkin M
    Anal Biochem; 2015 Jan; 468():75-82. PubMed ID: 25256165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil.
    Schlüsener MP; Bester K
    Environ Pollut; 2006 Oct; 143(3):565-71. PubMed ID: 16460854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Annual Exposure to Macrolide Antibiotics.
    Brown LP; Murray R; Scott A; Tien YC; Lau CH; Tai V; Topp E
    Appl Environ Microbiol; 2022 Apr; 88(8):e0031622. PubMed ID: 35384705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements.
    Lau CH; Tien YC; Stedtfeld RD; Topp E
    Sci Total Environ; 2020 Jul; 727():138520. PubMed ID: 32330714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explaining the accelerated degradation of ciprofloxacin, sulfamethazine, and erythromycin in different soil exposure scenarios by their aqueous extractability.
    Goulas A; Sabourin L; Asghar F; Haudin CS; Benoit P; Topp E
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16236-16245. PubMed ID: 29594886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin.
    Matic V; Kosowska K; Bozdogan B; Kelly LM; Smith K; Ednie LM; Lin G; Credito KL; Clark CL; McGhee P; Pankuch GA; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4103-12. PubMed ID: 15504828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant.
    Loganathan B; Phillips M; Mowery H; Jones-Lepp TL
    Chemosphere; 2009 Mar; 75(1):70-7. PubMed ID: 19121838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy.
    Burkin MA; Tevyashova AN; Bychkova EN; Melekhin AO; Galvidis IA
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin.
    Bahal N; Nahata MC
    Ann Pharmacother; 1992 Jan; 26(1):46-55. PubMed ID: 1318761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of macrolide antibiotics on nitric oxide synthase and xanthine oxidase activities, and malondialdehyde level in erythrocyte of the guinea pigs with experimental otitis media with effusion.
    Aktan B; Taysi S; Gümüştekin K; Uçüncü H; Memişoğullari R; Save K; Bakan N
    Pol J Pharmacol; 2003; 55(6):1105-10. PubMed ID: 14730107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients.
    Principi N; Esposito S
    Drug Saf; 1999 Jan; 20(1):25-41. PubMed ID: 9935275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment.
    Göbel A; Thomsen A; McArdell CS; Joss A; Giger W
    Environ Sci Technol; 2005 Jun; 39(11):3981-9. PubMed ID: 15984773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes.
    Milberg P; Eckardt L; Bruns HJ; Biertz J; Ramtin S; Reinsch N; Fleischer D; Kirchhof P; Fabritz L; Breithardt G; Haverkamp W
    J Pharmacol Exp Ther; 2002 Oct; 303(1):218-25. PubMed ID: 12235254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of the Effect of Macrolide Antibiotics Erythromycin, Clarithromycin, and Azithromycin on the ERG1 Gene Expression in H9c2 Cardiomyoblast Cells.
    Hajimirzaei N; Khalili NP; Boroumand B; Safari F; Pourhosseini A; Judi-Chelan R; Tavakoli F
    Drug Res (Stuttg); 2020 Aug; 70(8):341-347. PubMed ID: 32559772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new insight into solid-state conformation of macrolide antibiotics.
    Miroshnyk I; Mirza S; Zorky PM; Heinämäki J; Yli-Kauhaluoma J; Yliruusi J
    Bioorg Med Chem; 2008 Jan; 16(1):232-9. PubMed ID: 17936632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae.
    Kosowska K; Credito K; Pankuch GA; Hoellman D; Lin G; Clark C; Dewasse B; McGhee P; Jacobs MR; Appelbaum PC
    Antimicrob Agents Chemother; 2004 Nov; 48(11):4113-9. PubMed ID: 15504829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro activity of some 14-, 15- and 16- membered macrolides against Staphylococcus spp., Legionella spp., Mycoplasma spp. and Ureaplasma urealyticum.
    Felmingham D; Robbins MJ; Sanghrajka M; Leakey A; Ridgway GL
    Drugs Exp Clin Res; 1991; 17(2):91-9. PubMed ID: 1650694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan.
    Yasojima M; Nakada N; Komori K; Suzuki Y; Tanaka H
    Water Sci Technol; 2006; 53(11):227-33. PubMed ID: 16862794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin.
    Yeates RA; Laufen H; Zimmermann T; Schumacher T
    Int J Clin Pharmacol Ther; 1997 Dec; 35(12):577-9. PubMed ID: 9455717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.