These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2709677)

  • 1. P-31 nuclear magnetic resonance spectral changes in obstructed or dehydrated kidney.
    Shapiro JI; Cosby RL; Chan L
    Kidney Int; 1989 Mar; 35(3):830-5. PubMed ID: 2709677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-31 nuclear magnetic resonance spectroscopic study of obstructive uropathy in the rat.
    Shapiro JI; Chan L
    J Clin Invest; 1987 Nov; 80(5):1422-7. PubMed ID: 3680505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image guided localized 31P magnetic resonance spectroscopy of acute urinary tract obstruction.
    Parivar F; Barker PB; Narasimhan PT; Jones LW; Ross BD
    J Urol; 1991 Mar; 145(3):657-62. PubMed ID: 1997726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance study of renal transplantation.
    Chan L; Shapiro JI
    Ren Physiol Biochem; 1989; 12(3):181-90. PubMed ID: 2623344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P nuclear magnetic resonance study of acute renal dysfunction in rat kidney transplants.
    Shapiro JI; Haug CE; Weil R; Chan L
    Magn Reson Med; 1987 Oct; 5(4):346-52. PubMed ID: 3316920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal 31-phosphorus-magnetic resonance spectral changes in experimental uremia.
    Reichel H; Humburger F; Juretschke HP; Ritz E
    Nephron; 1996; 73(1):27-33. PubMed ID: 8742953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of hypermetabolism in the remnant kidney by dietary phosphate restriction in the rat.
    Shapiro JI; Harris DC; Schrier RW; Chan L
    Am J Physiol; 1990 Jan; 258(1 Pt 2):F183-8. PubMed ID: 2301590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus nuclear magnetic resonance study of the rat kidney in vivo.
    Balaban RS; Gadian DG; Radda GK
    Kidney Int; 1981 Nov; 20(5):575-9. PubMed ID: 7343707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High urinary flow accelerates renal injury in young rats with partial unilateral ureteral obstruction.
    Nguyen HT; Wu HY; Baskin LS; Kogan BA
    J Urol; 2000 Jun; 163(6):1904-7. PubMed ID: 10799225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased reabsorptive capacity after ureteral obstruction reduces the ability of glucose to inhibit phosphate reabsorption in rat kidney.
    Westenfelder C; Loghman-Adham M; Baranowski RL; Brownley R; Kablitz C
    Nephrol Dial Transplant; 1998 Jul; 13(7):1675-81. PubMed ID: 9681710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats.
    Bushinsky DA; Asplin JR; Grynpas MD; Evan AP; Parker WR; Alexander KM; Coe FL
    Kidney Int; 2002 Mar; 61(3):975-87. PubMed ID: 11849452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats.
    Bushinsky DA; Parker WR; Asplin JR
    Kidney Int; 2000 Feb; 57(2):550-60. PubMed ID: 10652032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride and phosphate as impediments to silica urinary calculi in rats fed tetraethylorthosilicate.
    Emerick RJ
    J Nutr; 1984 Apr; 114(4):733-8. PubMed ID: 6716175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term effects of partial unilateral ureteral obstruction on renal hemodynamics and morphology in newborn rats: a magnetic resonance imaging study.
    Wen JG; Ringgaard S; Jørgensen TM; Stødkilde-Jørgensen H; Djurhuus JC; Frøkiaer J
    Urol Res; 2002 Sep; 30(4):205-12. PubMed ID: 12202936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of aquaporins and sodium transporter proteins in the solitary kidney in response to partial ureteral obstruction in neonatal rats.
    Topcu SO; Nørregaard R; Pedersen M; Wang G; Jørgensen TM; Frøkiær J
    Urol Int; 2011; 87(1):94-104. PubMed ID: 21677414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study.
    Germano IM; Pitts LH; Berry I; De Armond SJ
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in NMR-visible kidney cell phosphate with age and diet: relationship to phosphate transport.
    Barac-Nieto M; Dowd TL; Gupta RK; Spitzer A
    Am J Physiol; 1991 Jul; 261(1 Pt 2):F153-62. PubMed ID: 1858897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction.
    Frøkiaer J; Christensen BM; Marples D; Djurhuus JC; Jensen UB; Knepper MA; Nielsen S
    Am J Physiol; 1997 Aug; 273(2 Pt 2):F213-23. PubMed ID: 9277582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of age on effects of ureteral obstruction on renal function.
    Taki M; Goldsmith DI; Spitzer A
    Kidney Int; 1983 Nov; 24(5):602-9. PubMed ID: 6663982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen ion compartmentation during and following cerebral ischemia evaluated by 31P NMR spectroscopy.
    Sunagawa S; Buist RJ; Hruska FE; Sutherland GR; Peeling J
    Brain Res; 1994 Apr; 641(2):328-32. PubMed ID: 8012836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.