These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 27096845)

  • 21. Field-Effect Device Using Quasi-Two-Dimensional Electron Gas in Mass-Producible Atomic-Layer-Deposited Al
    Seok TJ; Liu Y; Jung HJ; Kim SB; Kim DH; Kim SM; Jang JH; Cho DY; Lee SW; Park TJ
    ACS Nano; 2018 Oct; 12(10):10403-10409. PubMed ID: 30204410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A TiO
    Schipper DE; Zhao Z; Leitner AP; Xie L; Qin F; Alam MK; Chen S; Wang D; Ren Z; Wang Z; Bao J; Whitmire KH
    ACS Nano; 2017 Apr; 11(4):4051-4059. PubMed ID: 28333437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation.
    Kenney MJ; Gong M; Li Y; Wu JZ; Feng J; Lanza M; Dai H
    Science; 2013 Nov; 342(6160):836-40. PubMed ID: 24233719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.
    Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ
    ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes.
    Scheuermann AG; Lawrence JP; Kemp KW; Ito T; Walsh A; Chidsey CE; Hurley PK; McIntyre PC
    Nat Mater; 2016 Jan; 15(1):99-105. PubMed ID: 26480231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation.
    Li F; Li Y; Zhuo Q; Zhou D; Zhao Y; Zhao Z; Wu X; Shan Y; Sun L
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11479-11488. PubMed ID: 32056436
    [No Abstract]   [Full Text] [Related]  

  • 28. All-in-One Derivatized Tandem p
    Sheridan MV; Hill DJ; Sherman BD; Wang D; Marquard SL; Wee KR; Cahoon JF; Meyer TJ
    Nano Lett; 2017 Apr; 17(4):2440-2446. PubMed ID: 28240557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gallium Phosphide photoanode coated with TiO
    Alqahtani M; Ben-Jabar S; Ebaid M; Sathasivam S; Jurczak P; Xia X; Alromaeh A; Blackman C; Qin Y; Zhang B; Ooi BS; Liu H; Parkin IP; Wu J
    Opt Express; 2019 Apr; 27(8):A364-A371. PubMed ID: 31052888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts.
    Hemmerling JR; Mathur A; Linic S
    Acc Chem Res; 2021 Apr; 54(8):1992-2002. PubMed ID: 33794089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Band engineering for efficient catalyst-substrate coupling for photoelectrochemical water splitting.
    Klett J; Ziegler J; Radetinac A; Kaiser B; Schäfer R; Jaegermann W; Urbain F; Becker JP; Smirnov V; Finger F
    Phys Chem Chem Phys; 2016 Apr; 18(16):10751-7. PubMed ID: 26823011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.
    Digdaya IA; Adhyaksa GWP; Trześniewski BJ; Garnett EC; Smith WA
    Nat Commun; 2017 Jun; 8():15968. PubMed ID: 28660883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indium diffusion and native oxide removal during the atomic layer deposition (ALD) of TiO2 films on InAs(100) surfaces.
    Ye L; Gougousi T
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8081-7. PubMed ID: 23895423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition.
    Li M; Jin ZX; Zhang W; Bai YH; Cao YQ; Li WM; Wu D; Li AD
    Sci Rep; 2019 Jul; 9(1):10438. PubMed ID: 31320728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting.
    Yoon K; Lee JH; Kang J; Kang J; Moody MJ; Hersam MC; Lauhon LJ
    Nano Lett; 2016 Dec; 16(12):7370-7375. PubMed ID: 27960516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst.
    Fang GY; Xu LN; Wang LG; Cao YQ; Wu D; Li AD
    Nanoscale Res Lett; 2015; 10():68. PubMed ID: 25897298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D FTO/FTO-Nanocrystal/TiO
    Wang Z; Li X; Ling H; Tan CK; Yeo LP; Grimsdale AC; Tok AIY
    Small; 2018 May; 14(20):e1800395. PubMed ID: 29665266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective Growth of Interface Layers from Reactions of Sc(MeCp)
    Rahman R; Klesko JP; Dangerfield A; Mattson EC; Chabal YJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32818-32827. PubMed ID: 30211529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO
    Jun SE; Hong SP; Choi S; Kim C; Ji SG; Park IJ; Lee SA; Yang JW; Lee TH; Sohn W; Kim JY; Jang HW
    Small; 2021 Oct; 17(39):e2103457. PubMed ID: 34453489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.