These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27096880)

  • 1. Chemoavailability of Organic Electrophiles: Impact of Hydrophobicity and Reactivity on Their Aquatic Excess Toxicity.
    Böhme A; Laqua A; Schüürmann G
    Chem Res Toxicol; 2016 Jun; 29(6):952-62. PubMed ID: 27096880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.
    Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G
    Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model Suite for Predicting the Aquatic Toxicity of α,β-Unsaturated Esters Triggered by Their Chemoavailability.
    Mulliner D; Schüürmann G
    Mol Inform; 2013 Jan; 32(1):98-107. PubMed ID: 27481027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates.
    Böhme A; Thaens D; Paschke A; Schüürmann G
    Chem Res Toxicol; 2009 Apr; 22(4):742-50. PubMed ID: 19317512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations.
    Mulliner D; Wondrousch D; Schüürmann G
    Org Biomol Chem; 2011 Dec; 9(24):8400-12. PubMed ID: 22048735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds.
    Yarbrough JW; Schultz TW
    Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis.
    Schwöbel JA; Madden JC; Cronin MT
    Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophilicity as a possible descriptor for toxicity prediction.
    Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-toxicity relationships for alkanones and alkenones.
    Schultz TW; Sinks GD; Hunter RS
    SAR QSAR Environ Res; 1995; 3(1):27-36. PubMed ID: 7497340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.
    Schultz TW; Netzeva TI; Roberts DW; Cronin MT
    Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity.
    Dimitrov S; Koleva Y; Schultz TW; Walker JD; Mekenyan O
    Environ Toxicol Chem; 2004 Feb; 23(2):463-70. PubMed ID: 14982395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes.
    Furuhama A; Aoki Y; Shiraishi H
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):169-84. PubMed ID: 22150015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.
    Schultz TW; Cronin MT; Netzeva TI; Aptula AO
    Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals.
    Jaworska JS; Schultz TW
    SAR QSAR Environ Res; 1993; 1(1):3-19. PubMed ID: 8790624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds.
    Schultz TW; Ralston KE; Roberts DW; Veith GD; Aptula AO
    SAR QSAR Environ Res; 2007; 18(1-2):21-9. PubMed ID: 17365956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baseline Narcosis for the Glass-Vial 96-h Growth Inhibition of the Nematode
    Saleem S; Böhme A; Schüürmann G
    Environ Sci Technol; 2023 Jan; 57(4):1692-1700. PubMed ID: 36656685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of categories from structure-activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds.
    Koleva YK; Madden JC; Cronin MT
    Chem Res Toxicol; 2008 Dec; 21(12):2300-12. PubMed ID: 19053326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri.
    Cronin MT; Schultz TW
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):65-9. PubMed ID: 9515077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis.
    Schultz TW; Sparfkin CL; Aptula AO
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute and chronic toxicity toward the bacteria Vibrio fischeri of organic narcotics and epoxides: structural alerts for epoxide excess toxicity.
    Blaschke U; Paschke A; Rensch I; Schüürmann G
    Chem Res Toxicol; 2010 Dec; 23(12):1936-46. PubMed ID: 21049979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.