BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27097059)

  • 1. The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis.
    Turonova H; Neu TR; Ulbrich P; Pazlarova J; Tresse O
    Biofouling; 2016; 32(5):597-608. PubMed ID: 27097059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined pH ratiometry and fluorescence lectin-binding analysis (pH-FLBA) for microscopy-based analyses of biofilm pH and matrix carbohydrates.
    Del Rey YC; Schramm A; L Meyer R; Lund MB; Schlafer S
    Appl Environ Microbiol; 2024 Feb; 90(2):e0200723. PubMed ID: 38265212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.
    Dige I; Paqué PN; Del Rey YC; Lund MB; Schramm A; Schlafer S
    Mol Oral Microbiol; 2022 Oct; 37(5):196-205. PubMed ID: 35960156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of glycan interactions of clinical and avian isolates of Campylobacter jejuni.
    Day CJ; Tram G; Hartley-Tassell LE; Tiralongo J; Korolik V
    BMC Microbiol; 2013 Oct; 13():228. PubMed ID: 24119179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.
    Feng J; Ma L; Nie J; Konkel ME; Lu X
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29269493
    [No Abstract]   [Full Text] [Related]  

  • 6. Campylobacter jejuni strain discrimination and temperature-dependent glycome expression profiling by lectin microarray.
    Kilcoyne M; Twomey ME; Gerlach JQ; Kane M; Moran AP; Joshi L
    Carbohydr Res; 2014 May; 389():123-33. PubMed ID: 24680511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.
    Brown HL; Reuter M; Hanman K; Betts RP; van Vliet AH
    PLoS One; 2015; 10(3):e0121680. PubMed ID: 25803828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse Correlation between Extracellular DNase Activity and Biofilm Formation among Chicken-Derived
    Jung GH; Lim ES; Woo MA; Lee JY; Kim JS; Paik HD
    J Microbiol Biotechnol; 2017 Nov; 27(11):1942-1951. PubMed ID: 28870004
    [No Abstract]   [Full Text] [Related]  

  • 9. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms.
    Zhang RY; Neu TR; Bellenberg S; Kuhlicke U; Sand W; Vera M
    Microb Biotechnol; 2015 May; 8(3):448-61. PubMed ID: 25488256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.
    Semchenko EA; Day CJ; Moutin M; Wilson JC; Tiralongo J; Korolik V
    PLoS One; 2012; 7(7):e40920. PubMed ID: 22815868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis.
    Tawakoli PN; Neu TR; Busck MM; Kuhlicke U; Schramm A; Attin T; Wiedemeier DB; Schlafer S
    J Oral Microbiol; 2017; 9(1):1345581. PubMed ID: 28748044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion, Biofilm Formation, and
    Shagieva E; Teren M; Michova H; Strakova N; Karpiskova R; Demnerova K
    Front Cell Infect Microbiol; 2020; 10():596613. PubMed ID: 33330139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy.
    Szymanski CM; Michael FS; Jarrell HC; Li J; Gilbert M; Larocque S; Vinogradov E; Brisson JR
    J Biol Chem; 2003 Jul; 278(27):24509-20. PubMed ID: 12716884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.
    Dwivedi R; Nothaft H; Garber J; Xin Kin L; Stahl M; Flint A; van Vliet AH; Stintzi A; Szymanski CM
    Mol Microbiol; 2016 Aug; 101(4):575-89. PubMed ID: 27145048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biofilm forming potential of bacterial species in the genus Campylobacter.
    Gunther NW; Chen CY
    Food Microbiol; 2009 Feb; 26(1):44-51. PubMed ID: 19028304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions.
    Reuter M; Mallett A; Pearson BM; van Vliet AH
    Appl Environ Microbiol; 2010 Apr; 76(7):2122-8. PubMed ID: 20139307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations.
    Teh KH; Flint S; French N
    Int J Food Microbiol; 2010 Oct; 143(3):118-24. PubMed ID: 20805009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni.
    Svensson SL; Pryjma M; Gaynor EC
    PLoS One; 2014; 9(8):e106063. PubMed ID: 25166748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of growth conditions on diverse polysaccharide production by Campylobacter jejuni.
    Corcoran AT; Moran AP
    FEMS Immunol Med Microbiol; 2007 Feb; 49(1):124-32. PubMed ID: 17266718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus.
    Zhang R; Neu TR; Zhang Y; Bellenberg S; Kuhlicke U; Li Q; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7343-56. PubMed ID: 26169631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.