These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 27097059)
1. The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis. Turonova H; Neu TR; Ulbrich P; Pazlarova J; Tresse O Biofouling; 2016; 32(5):597-608. PubMed ID: 27097059 [TBL] [Abstract][Full Text] [Related]
2. Combined pH ratiometry and fluorescence lectin-binding analysis (pH-FLBA) for microscopy-based analyses of biofilm pH and matrix carbohydrates. Del Rey YC; Schramm A; L Meyer R; Lund MB; Schlafer S Appl Environ Microbiol; 2024 Feb; 90(2):e0200723. PubMed ID: 38265212 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose. Dige I; Paqué PN; Del Rey YC; Lund MB; Schramm A; Schlafer S Mol Oral Microbiol; 2022 Oct; 37(5):196-205. PubMed ID: 35960156 [TBL] [Abstract][Full Text] [Related]
4. Assessment of glycan interactions of clinical and avian isolates of Campylobacter jejuni. Day CJ; Tram G; Hartley-Tassell LE; Tiralongo J; Korolik V BMC Microbiol; 2013 Oct; 13():228. PubMed ID: 24119179 [TBL] [Abstract][Full Text] [Related]
5. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation. Feng J; Ma L; Nie J; Konkel ME; Lu X Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29269493 [No Abstract] [Full Text] [Related]
6. Campylobacter jejuni strain discrimination and temperature-dependent glycome expression profiling by lectin microarray. Kilcoyne M; Twomey ME; Gerlach JQ; Kane M; Moran AP; Joshi L Carbohydr Res; 2014 May; 389():123-33. PubMed ID: 24680511 [TBL] [Abstract][Full Text] [Related]
7. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. Brown HL; Reuter M; Hanman K; Betts RP; van Vliet AH PLoS One; 2015; 10(3):e0121680. PubMed ID: 25803828 [TBL] [Abstract][Full Text] [Related]
8. Inverse Correlation between Extracellular DNase Activity and Biofilm Formation among Chicken-Derived Jung GH; Lim ES; Woo MA; Lee JY; Kim JS; Paik HD J Microbiol Biotechnol; 2017 Nov; 27(11):1942-1951. PubMed ID: 28870004 [No Abstract] [Full Text] [Related]
9. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Zhang RY; Neu TR; Bellenberg S; Kuhlicke U; Sand W; Vera M Microb Biotechnol; 2015 May; 8(3):448-61. PubMed ID: 25488256 [TBL] [Abstract][Full Text] [Related]
10. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides. Semchenko EA; Day CJ; Moutin M; Wilson JC; Tiralongo J; Korolik V PLoS One; 2012; 7(7):e40920. PubMed ID: 22815868 [TBL] [Abstract][Full Text] [Related]
11. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis. Tawakoli PN; Neu TR; Busck MM; Kuhlicke U; Schramm A; Attin T; Wiedemeier DB; Schlafer S J Oral Microbiol; 2017; 9(1):1345581. PubMed ID: 28748044 [TBL] [Abstract][Full Text] [Related]
12. Adhesion, Biofilm Formation, and Shagieva E; Teren M; Michova H; Strakova N; Karpiskova R; Demnerova K Front Cell Infect Microbiol; 2020; 10():596613. PubMed ID: 33330139 [TBL] [Abstract][Full Text] [Related]
13. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. Szymanski CM; Michael FS; Jarrell HC; Li J; Gilbert M; Larocque S; Vinogradov E; Brisson JR J Biol Chem; 2003 Jul; 278(27):24509-20. PubMed ID: 12716884 [TBL] [Abstract][Full Text] [Related]
14. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Dwivedi R; Nothaft H; Garber J; Xin Kin L; Stahl M; Flint A; van Vliet AH; Stintzi A; Szymanski CM Mol Microbiol; 2016 Aug; 101(4):575-89. PubMed ID: 27145048 [TBL] [Abstract][Full Text] [Related]
15. The biofilm forming potential of bacterial species in the genus Campylobacter. Gunther NW; Chen CY Food Microbiol; 2009 Feb; 26(1):44-51. PubMed ID: 19028304 [TBL] [Abstract][Full Text] [Related]
16. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Reuter M; Mallett A; Pearson BM; van Vliet AH Appl Environ Microbiol; 2010 Apr; 76(7):2122-8. PubMed ID: 20139307 [TBL] [Abstract][Full Text] [Related]
17. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Teh KH; Flint S; French N Int J Food Microbiol; 2010 Oct; 143(3):118-24. PubMed ID: 20805009 [TBL] [Abstract][Full Text] [Related]
18. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. Svensson SL; Pryjma M; Gaynor EC PLoS One; 2014; 9(8):e106063. PubMed ID: 25166748 [TBL] [Abstract][Full Text] [Related]
19. Influence of growth conditions on diverse polysaccharide production by Campylobacter jejuni. Corcoran AT; Moran AP FEMS Immunol Med Microbiol; 2007 Feb; 49(1):124-32. PubMed ID: 17266718 [TBL] [Abstract][Full Text] [Related]
20. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Zhang R; Neu TR; Zhang Y; Bellenberg S; Kuhlicke U; Li Q; Sand W; Vera M Appl Microbiol Biotechnol; 2015 Sep; 99(17):7343-56. PubMed ID: 26169631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]