BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1438 related articles for article (PubMed ID: 27097283)

  • 21. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72.
    Chiò A; Borghero G; Restagno G; Mora G; Drepper C; Traynor BJ; Sendtner M; Brunetti M; Ossola I; Calvo A; Pugliatti M; Sotgiu MA; Murru MR; Marrosu MG; Marrosu F; Marinou K; Mandrioli J; Sola P; Caponnetto C; Mancardi G; Mandich P; La Bella V; Spataro R; Conte A; Monsurrò MR; Tedeschi G; Pisano F; Bartolomei I; Salvi F; Lauria Pinter G; Simone I; Logroscino G; Gambardella A; Quattrone A; Lunetta C; Volanti P; Zollino M; Penco S; Battistini S; ; Renton AE; Majounie E; Abramzon Y; Conforti FL; Giannini F; Corbo M; Sabatelli M
    Brain; 2012 Mar; 135(Pt 3):784-93. PubMed ID: 22366794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis.
    Mehta AR; Gregory JM; Dando O; Carter RN; Burr K; Nanda J; Story D; McDade K; Smith C; Morton NM; Mahad DJ; Hardingham GE; Chandran S; Selvaraj BT
    Acta Neuropathol; 2021 Feb; 141(2):257-279. PubMed ID: 33398403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72.
    Murray ME; DeJesus-Hernandez M; Rutherford NJ; Baker M; Duara R; Graff-Radford NR; Wszolek ZK; Ferman TJ; Josephs KA; Boylan KB; Rademakers R; Dickson DW
    Acta Neuropathol; 2011 Dec; 122(6):673-90. PubMed ID: 22083254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia.
    Stepto A; Gallo JM; Shaw CE; Hirth F
    Acta Neuropathol; 2014 Mar; 127(3):377-89. PubMed ID: 24366528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The frequency of the C9orf72 expansion in a Brazilian population.
    Cintra VP; Bonadia LC; Andrade HMT; de Albuquerque M; Eusébio MF; de Oliveira DS; Claudino R; Gonçalves MVM; Teixeira AL; de Godoy Rousseff Prado L; de Souza LC; Dourado MET; Oliveira ASB; Tumas V; França MC; Marques W
    Neurobiol Aging; 2018 Jun; 66():179.e1-179.e4. PubMed ID: 29449030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.
    Sivadasan R; Hornburg D; Drepper C; Frank N; Jablonka S; Hansel A; Lojewski X; Sterneckert J; Hermann A; Shaw PJ; Ince PG; Mann M; Meissner F; Sendtner M
    Nat Neurosci; 2016 Dec; 19(12):1610-1618. PubMed ID: 27723745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the C9ORF72 repeat expansion mutation using human induced pluripotent stem cells.
    Selvaraj BT; Livesey MR; Chandran S
    Brain Pathol; 2017 Jul; 27(4):518-524. PubMed ID: 28585384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Mechanisms of Neurodegeneration Related to
    Babić Leko M; Župunski V; Kirincich J; Smilović D; Hortobágyi T; Hof PR; Šimić G
    Behav Neurol; 2019; 2019():2909168. PubMed ID: 30774737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice.
    Peters OM; Cabrera GT; Tran H; Gendron TF; McKeon JE; Metterville J; Weiss A; Wightman N; Salameh J; Kim J; Sun H; Boylan KB; Dickson D; Kennedy Z; Lin Z; Zhang YJ; Daughrity L; Jung C; Gao FB; Sapp PC; Horvitz HR; Bosco DA; Brown SP; de Jong P; Petrucelli L; Mueller C; Brown RH
    Neuron; 2015 Dec; 88(5):902-909. PubMed ID: 26637797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia.
    Jiang J; Ravits J
    Neurotherapeutics; 2019 Oct; 16(4):1115-1132. PubMed ID: 31667754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of human induced pluripotent stem cell lines from sporadic, sporadic frontotemporal dementia, familial SOD1, and familial C9orf72 amyotrophic lateral sclerosis (ALS) patients.
    Jiang L; Tracey TJ; Gill MK; Howe SL; Power DT; Bharti V; McCombe PA; Henderson RD; Steyn FJ; Ngo ST
    Stem Cell Res; 2024 Aug; 78():103447. PubMed ID: 38796984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 screen in human iPSC-derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity.
    Guo W; Wang H; Kumar Tharkeshwar A; Couthouis J; Braems E; Masrori P; Van Schoor E; Fan Y; Ahuja K; Moisse M; Jacquemyn M; Furtado Madeiro da Costa R; Gajjar M; Balusu S; Tricot T; Fumagalli L; Hersmus N; Janky R; Impens F; Vanden Berghe P; Ho R; Thal DR; Vandenberghe R; Hegde ML; Chandran S; De Strooper B; Daelemans D; Van Damme P; Van Den Bosch L; Verfaillie C
    Alzheimers Dement; 2023 Apr; 19(4):1245-1259. PubMed ID: 35993441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear lamina invaginations are not a pathological feature of C9orf72 ALS/FTD.
    Coyne AN; Rothstein JD
    Acta Neuropathol Commun; 2021 Mar; 9(1):45. PubMed ID: 33741069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of C9orf72 repeat expansions in patients with amyotrophic lateral sclerosis and frontotemporal dementia in mainland China.
    Jiao B; Tang B; Liu X; Yan X; Zhou L; Yang Y; Wang J; Xia K; Shen L
    Neurobiol Aging; 2014 Apr; 35(4):936.e19-22. PubMed ID: 24269022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Impact of C9orf72 on Japanese Patients with Amytrophic Lateral Sclerosis (ALS)/Frontotemporal Dementia (FTD)].
    Tomiyama H
    Brain Nerve; 2019 Nov; 71(11):1190-1208. PubMed ID: 31722305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Longitudinal imaging in
    Floeter MK; Bageac D; Danielian LE; Braun LE; Traynor BJ; Kwan JY
    Neuroimage Clin; 2016; 12():1035-1043. PubMed ID: 27995069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.
    Stopford MJ; Higginbottom A; Hautbergue GM; Cooper-Knock J; Mulcahy PJ; De Vos KJ; Renton AE; Pliner H; Calvo A; Chio A; Traynor BJ; Azzouz M; Heath PR; ; Kirby J; Shaw PJ
    Hum Mol Genet; 2017 Mar; 26(6):1133-1145. PubMed ID: 28158451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.
    Ciura S; Sellier C; Campanari ML; Charlet-Berguerand N; Kabashi E
    Autophagy; 2016 Aug; 12(8):1406-8. PubMed ID: 27245636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72.
    Goldman JS; Quinzii C; Dunning-Broadbent J; Waters C; Mitsumoto H; Brannagan TH; Cosentino S; Huey ED; Nagy P; Kuo SH
    JAMA Neurol; 2014 Jun; 71(6):771-4. PubMed ID: 24733620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.
    Zhang K; Donnelly CJ; Haeusler AR; Grima JC; Machamer JB; Steinwald P; Daley EL; Miller SJ; Cunningham KM; Vidensky S; Gupta S; Thomas MA; Hong I; Chiu SL; Huganir RL; Ostrow LW; Matunis MJ; Wang J; Sattler R; Lloyd TE; Rothstein JD
    Nature; 2015 Sep; 525(7567):56-61. PubMed ID: 26308891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 72.