These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 27097687)
1. A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells. Ye J; Wang J; Zhu Y; Wei Q; Wang X; Yang J; Tang S; Liu H; Fan J; Zhang F; Farina EM; Mohammed MK; Zou Y; Song D; Liao J; Huang J; Guo D; Lu M; Liu F; Liu J; Li L; Ma C; Hu X; Haydon RC; Lee MJ; Reid RR; Ameer GA; Yang L; He TC Biomed Mater; 2016 Apr; 11(2):025021. PubMed ID: 27097687 [TBL] [Abstract][Full Text] [Related]
2. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold. Dumanian ZP; Tollemar V; Ye J; Lu M; Zhu Y; Liao J; Ameer GA; He TC; Reid RR PLoS One; 2017; 12(3):e0172327. PubMed ID: 28249039 [TBL] [Abstract][Full Text] [Related]
3. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. Zhao C; Zeng Z; Qazvini NT; Yu X; Zhang R; Yan S; Shu Y; Zhu Y; Duan C; Bishop E; Lei J; Zhang W; Yang C; Wu K; Wu Y; An L; Huang S; Ji X; Gong C; Yuan C; Zhang L; Liu W; Huang B; Feng Y; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Oliveira L; Athiviraham A; Lee MJ; Wolf JM; Ameer GA; Reid RR; He TC; Huang W ACS Biomater Sci Eng; 2018 Aug; 4(8):2943-2955. PubMed ID: 30906855 [TBL] [Abstract][Full Text] [Related]
4. Characterization of scaffold carriers for BMP9-transduced osteoblastic progenitor cells in bone regeneration. Shui W; Zhang W; Yin L; Nan G; Liao Z; Zhang H; Wang N; Wu N; Chen X; Wen S; He Y; Deng F; Zhang J; Luu HH; Shi LL; Hu Z; Haydon RC; Mok JM; He TC J Biomed Mater Res A; 2014 Oct; 102(10):3429-38. PubMed ID: 24133046 [TBL] [Abstract][Full Text] [Related]
5. BMP9 exhibits dual and coupled roles in inducing osteogenic and angiogenic differentiation of mesenchymal stem cells. Xiao H; Wang X; Wang C; Dai G; Zhu Z; Gao S; He B; Liao J; Huang W Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32478395 [TBL] [Abstract][Full Text] [Related]
6. Gelatin-Derived Graphene-Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Zou Y; Qazvini NT; Zane K; Sadati M; Wei Q; Liao J; Fan J; Song D; Liu J; Ma C; Qu X; Chen L; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Li Y; Zhang W; Reid RR; Lee MJ; Wolf JM; Tirrell M; He TC; de Pablo JJ; Deng ZL ACS Appl Mater Interfaces; 2017 May; 9(19):15922-15932. PubMed ID: 28406027 [TBL] [Abstract][Full Text] [Related]
7. Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. Wang Y; Hong S; Li M; Zhang J; Bi Y; He Y; Liu X; Nan G; Su Y; Zhu G; Li R; Zhang W; Wang J; Zhang H; Kong Y; Shui W; Wu N; He Y; Chen X; Luu HH; Haydon RC; Shi LL; He TC; Qin J J Orthop Res; 2013 Nov; 31(11):1796-803. PubMed ID: 23861103 [TBL] [Abstract][Full Text] [Related]
8. Chitosan/gelatin scaffolds support bone regeneration. Georgopoulou A; Papadogiannis F; Batsali A; Marakis J; Alpantaki K; Eliopoulos AG; Pontikoglou C; Chatzinikolaidou M J Mater Sci Mater Med; 2018 May; 29(5):59. PubMed ID: 29730855 [TBL] [Abstract][Full Text] [Related]
9. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
10. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Brunelle AR; Horner CB; Low K; Ico G; Nam J Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540 [TBL] [Abstract][Full Text] [Related]
11. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Park H; Temenoff JS; Tabata Y; Caplan AI; Mikos AG Biomaterials; 2007 Jul; 28(21):3217-27. PubMed ID: 17445882 [TBL] [Abstract][Full Text] [Related]
12. Matrigel Scaffolding Enhances BMP9-induced Bone Formation in Dental Follicle Stem/Precursor Cells. Fu T; Liang P; Song J; Wang J; Zhou P; Tang Y; Li J; Huang E Int J Med Sci; 2019; 16(4):567-575. PubMed ID: 31171908 [TBL] [Abstract][Full Text] [Related]
13. Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation. Pi CJ; Liang KL; Ke ZY; Chen F; Cheng Y; Yin LJ; Deng ZL; He BC; Chen L Biol Chem; 2016 Aug; 397(8):765-75. PubMed ID: 27003241 [TBL] [Abstract][Full Text] [Related]
14. NEL-Like Molecule-1 (Nell1) Is Regulated by Bone Morphogenetic Protein 9 (BMP9) and Potentiates BMP9-Induced Osteogenic Differentiation at the Expense of Adipogenesis in Mesenchymal Stem Cells. Wang J; Liao J; Zhang F; Song D; Lu M; Liu J; Wei Q; Tang S; Liu H; Fan J; Zou Y; Guo D; Huang J; Liu F; Ma C; Hu X; Li L; Qu X; Chen L; Weng Y; Lee MJ; He TC; Reid RR; Zhang J Cell Physiol Biochem; 2017; 41(2):484-500. PubMed ID: 28214873 [TBL] [Abstract][Full Text] [Related]
15. BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells. Wang JH; Liu YZ; Yin LJ; Chen L; Huang J; Liu Y; Zhang RX; Zhou LY; Yang QJ; Luo JY; Zuo GW; Deng ZL; He BC Bone; 2013 Nov; 57(1):311-21. PubMed ID: 23981660 [TBL] [Abstract][Full Text] [Related]
16. Inhibin α-subunit inhibits BMP9-induced osteogenic differentiation through blocking BMP/Smad signal and activating NF-κB signal in mesenchymal stem cells. Huang M; Cheng YL; Zeng JT; Su XY; Liu H J Cell Biochem; 2018 Nov; 119(10):8271-8281. PubMed ID: 29923343 [TBL] [Abstract][Full Text] [Related]
17. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. Smith CA; Richardson SM; Eagle MJ; Rooney P; Board T; Hoyland JA J Tissue Eng Regen Med; 2015 May; 9(5):595-604. PubMed ID: 24945627 [TBL] [Abstract][Full Text] [Related]
18. A thermoresponsive, citrate-based macromolecule for bone regenerative engineering. Morochnik S; Zhu Y; Duan C; Cai M; Reid RR; He TC; Koh J; Szleifer I; Ameer GA J Biomed Mater Res A; 2018 Jun; 106(6):1743-1752. PubMed ID: 29396921 [TBL] [Abstract][Full Text] [Related]
19. Follicle-Stimulating Hormone β-Subunit Potentiates Bone Morphogenetic Protein 9-Induced Osteogenic Differentiation in Mouse Embryonic Fibroblasts. Su XY; Zou X; Chen QZ; Zeng YH; Shao Y; He BC; Liu H J Cell Biochem; 2017 Jul; 118(7):1792-1802. PubMed ID: 27996168 [TBL] [Abstract][Full Text] [Related]
20. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]