These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27097990)

  • 1. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure.
    Huang ZM; Huang WQ; Liu SR; Dong TG; Wang G; Wu XK; Qin CJ
    Sci Rep; 2016 Apr; 6():24802. PubMed ID: 27097990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23344-23351. PubMed ID: 30175833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Jan; 23(2):739-46. PubMed ID: 25835833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction that uniaxial tension along <111> produces a direct band gap in germanium.
    Zhang F; Crespi VH; Zhang P
    Phys Rev Lett; 2009 Apr; 102(15):156401. PubMed ID: 19518657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes.
    Wu X; Tian Z; Cong H; Wang Y; Edy R; Huang G; Di Z; Xue C; Mei Y
    Nanotechnology; 2018 Oct; 29(42):42LT02. PubMed ID: 30052202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Mar; 23(6):7924-32. PubMed ID: 25837129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures.
    Timofeev VA; Nikiforov AI; Tuktamyshev AR; Mashanov VI; Loshkarev ID; Bloshkin AA; Gutakovskii AK
    Nanotechnology; 2018 Apr; 29(15):154002. PubMed ID: 29388560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-induced changes to the electronic structure of germanium.
    Tahini H; Chroneos A; Grimes RW; Schwingenschlögl U; Dimoulas A
    J Phys Condens Matter; 2012 May; 24(19):195802. PubMed ID: 22510461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Titanium Nitride/Germanium-Tin Photodetectors Based on Sub-Bandgap Absorption.
    An S; Liao Y; Kim M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61396-61403. PubMed ID: 34851080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of direct bandgap type-I GeSn/GeSn double quantum well with improved carrier confinement.
    Grant PC; Margetis J; Du W; Zhou Y; Dou W; Abernathy G; Kuchuk A; Li B; Tolle J; Liu J; Sun G; Soref RA; Mortazavi M; Yu SQ
    Nanotechnology; 2018 Nov; 29(46):465201. PubMed ID: 30191884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks.
    Millar RW; Dumas DCS; Gallacher KF; Jahandar P; MacGregor C; Myronov M; Paul DJ
    Opt Express; 2017 Oct; 25(21):25374-25385. PubMed ID: 29041205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroluminescence of GeSn/Ge MQW LEDs on Si substrate.
    Schwartz B; Oehme M; Kostecki K; Widmann D; Gollhofer M; Koerner R; Bechler S; Fischer IA; Wendav T; Kasper E; Schulze J; Kittler M
    Opt Lett; 2015 Jul; 40(13):3209-12. PubMed ID: 26125404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and Optical Properties of Direct Band Gap Ge/Ge
    Assali S; Dijkstra A; Li A; Koelling S; Verheijen MA; Gagliano L; von den Driesch N; Buca D; Koenraad PM; Haverkort JE; Bakkers EP
    Nano Lett; 2017 Mar; 17(3):1538-1544. PubMed ID: 28165747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors.
    Wirths S; Stange D; Pampillón MA; Tiedemann AT; Mussler G; Fox A; Breuer U; Baert B; San Andrés E; Nguyen ND; Hartmann JM; Ikonic Z; Mantl S; Buca D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):62-7. PubMed ID: 25531887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers.
    Tan CS; Huang MH
    Chem Asian J; 2018 May; ():. PubMed ID: 29786970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain.
    Peng X; Tang F; Logan P
    J Phys Condens Matter; 2011 Mar; 23(11):115502. PubMed ID: 21358032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and Strain Modulation of GeSn Alloys for Photonic and Electronic Applications.
    Kong Z; Wang G; Liang R; Su J; Xun M; Miao Y; Gu S; Li J; Cao K; Lin H; Li B; Ren Y; Li J; Xu J; Radamson HH
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneously-Grown Tunable Tensile Strained Germanium on Silicon for Photonic Devices.
    Clavel M; Saladukha D; Goley PS; Ochalski TJ; Murphy-Armando F; Bodnar RJ; Hudait MK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26470-81. PubMed ID: 26561963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of tensile strain on low Sn content GeSn lasing.
    Rainko D; Ikonic Z; Elbaz A; von den Driesch N; Stange D; Herth E; Boucaud P; El Kurdi M; Grützmacher D; Buca D
    Sci Rep; 2019 Jan; 9(1):259. PubMed ID: 30670785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of stress distribution in microfabricated germanium with external stressors for enhancement of light emission.
    Tani K; Oda K; Ido T
    Opt Express; 2020 Dec; 28(25):38267-38279. PubMed ID: 33379642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.