These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27098046)

  • 1. OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air-Water Interface.
    Enami S; Sakamoto Y
    J Phys Chem A; 2016 May; 120(20):3578-87. PubMed ID: 27098046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ mass spectrometric detection of interfacial intermediates in the oxidation of RCOOH(aq) by gas-phase OH-radicals.
    Enami S; Hoffmann MR; Colussi AJ
    J Phys Chem A; 2014 Jun; 118(23):4130-7. PubMed ID: 24841316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the OH Oxidation of Pinonic Acid at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS).
    Huang Y; Barraza KM; Kenseth CM; Zhao R; Wang C; Beauchamp JL; Seinfeld JH
    J Phys Chem A; 2018 Aug; 122(31):6445-6456. PubMed ID: 30011201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise Oxidation of Aqueous Dicarboxylic Acids by Gas-Phase OH Radicals.
    Enami S; Hoffmann MR; Colussi AJ
    J Phys Chem Lett; 2015 Feb; 6(3):527-34. PubMed ID: 26261974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid.
    Enami S; Colussi AJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17044-17051. PubMed ID: 28643829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cis-Pinonic Acid Oxidation by Hydroxyl Radicals in the Aqueous Phase under Acidic and Basic Conditions: Kinetics and Mechanism.
    Witkowski B; Gierczak T
    Environ Sci Technol; 2017 Sep; 51(17):9765-9773. PubMed ID: 28719200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical.
    Romonosky DE; Li Y; Shiraiwa M; Laskin A; Laskin J; Nizkorodov SA
    J Phys Chem A; 2017 Feb; 121(6):1298-1309. PubMed ID: 28099012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylate Ion Availability at the Air-Water Interface.
    Enami S; Fujii T; Sakamoto Y; Hama T; Kajii Y
    J Phys Chem A; 2016 Nov; 120(46):9224-9234. PubMed ID: 27786465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.
    Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP
    J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface.
    Enami S; Hoffmann MR; Colussi AJ
    Phys Chem Chem Phys; 2016 Nov; 18(46):31505-31512. PubMed ID: 27827491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OH-Radical Oxidation of Lung Surfactant Protein B on Aqueous Surfaces.
    Enami S; Colussi AJ
    Mass Spectrom (Tokyo); 2018; 7(2):S0077. PubMed ID: 30533342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.
    Kim S; Guenther A; Apel E
    Environ Sci Process Impacts; 2013 Jul; 15(7):1301-14. PubMed ID: 23748571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous Kinetics of cis-Pinonic Acid with Hydroxyl Radical under Different Environmental Conditions.
    Lai C; Liu Y; Ma J; Ma Q; Chu B; He H
    J Phys Chem A; 2015 Jun; 119(25):6583-93. PubMed ID: 26017096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance.
    Hou GL; Zhang J; Valiev M; Wang XB
    Phys Chem Chem Phys; 2017 Apr; 19(16):10676-10684. PubMed ID: 28398433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase extraction of organic compounds in atmospheric aerosol particles collected with the particle-into-liquid sampler and analysis by liquid chromatography-mass spectrometry.
    Parshintsev J; Hyötyläinen T; Hartonen K; Kulmala M; Riekkola ML
    Talanta; 2010 Jan; 80(3):1170-6. PubMed ID: 20006070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical study of aqueous cis-pinonic acid photolysis.
    Lignell H; Epstein SA; Marvin MR; Shemesh D; Gerber B; Nizkorodov S
    J Phys Chem A; 2013 Dec; 117(48):12930-45. PubMed ID: 24245507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.
    Donaldson DJ; Valsaraj KT
    Environ Sci Technol; 2010 Feb; 44(3):865-73. PubMed ID: 20058916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.
    Pillar-Little EA; Camm RC; Guzman MI
    Environ Sci Technol; 2014 Dec; 48(24):14352-60. PubMed ID: 25423038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.