These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
988 related articles for article (PubMed ID: 27098524)
21. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). Li NN; Yue C; Cao HL; Qian WJ; Hao XY; Wang YC; Wang L; Ding CQ; Wang XC; Yang YJ J Plant Physiol; 2018; 224-225():144-155. PubMed ID: 29642051 [TBL] [Abstract][Full Text] [Related]
22. Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis). Li QS; Lin XM; Qiao RY; Zheng XQ; Lu JL; Ye JH; Liang YR Sci Rep; 2017 Aug; 7(1):9847. PubMed ID: 28851890 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Wu ZJ; Li XH; Liu ZW; Li H; Wang YX; Zhuang J Funct Integr Genomics; 2015 Nov; 15(6):741-52. PubMed ID: 26233577 [TBL] [Abstract][Full Text] [Related]
24. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. Wang L; Yue C; Cao H; Zhou Y; Zeng J; Yang Y; Wang X BMC Plant Biol; 2014 Dec; 14():352. PubMed ID: 25491435 [TBL] [Abstract][Full Text] [Related]
25. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Wu ZJ; Li XH; Liu ZW; Li H; Wang YX; Zhuang J Mol Genet Genomics; 2016 Feb; 291(1):255-69. PubMed ID: 26308611 [TBL] [Abstract][Full Text] [Related]
26. Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Zhang Z; Liu Z; Li S; Xiong T; Ye F; Han Y; Sun M; Cao J; Luo T; Zhang C; Chen J; Zhang W; Lian S; Yuan H Genomics; 2022 Nov; 114(6):110506. PubMed ID: 36265745 [TBL] [Abstract][Full Text] [Related]
27. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. Jin Q; Wang Z; Chen Y; Luo Y; Tian N; Liu Z; Huang J; Liu S BMC Genomics; 2022 Jan; 23(1):29. PubMed ID: 34991475 [TBL] [Abstract][Full Text] [Related]
28. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). Cao D; Liu Y; Ma L; Jin X; Guo G; Tan R; Liu Z; Zheng L; Ye F; Liu W PLoS One; 2018; 13(6):e0197506. PubMed ID: 29856771 [TBL] [Abstract][Full Text] [Related]
29. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. Liu L; Li Y; She G; Zhang X; Jordan B; Chen Q; Zhao J; Wan X BMC Plant Biol; 2018 Oct; 18(1):233. PubMed ID: 30314466 [TBL] [Abstract][Full Text] [Related]
30. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( Zhang Q; Guo N; Zhang Y; Yu Y; Liu S Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163217 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. Zhang CC; Wang LY; Wei K; Wu LY; Li HL; Zhang F; Cheng H; Ni DJ BMC Genomics; 2016 May; 17():359. PubMed ID: 27183979 [TBL] [Abstract][Full Text] [Related]
32. Gene expression analysis of bud and leaf color in tea. Wei K; Zhang Y; Wu L; Li H; Ruan L; Bai P; Zhang C; Zhang F; Xu L; Wang L; Cheng H Plant Physiol Biochem; 2016 Oct; 107():310-318. PubMed ID: 27362295 [TBL] [Abstract][Full Text] [Related]
33. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea ( Zhou C; Mei X; Rothenberg DO; Yang Z; Zhang W; Wan S; Yang H; Zhang L Molecules; 2020 Jan; 25(1):. PubMed ID: 31906542 [TBL] [Abstract][Full Text] [Related]
34. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'. Guo Y; Zhu C; Zhao S; Zhang S; Wang W; Fu H; Li X; Zhou C; Chen L; Lin Y; Lai Z BMC Genomics; 2019 Apr; 20(1):265. PubMed ID: 30943892 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze]. Wang YX; Liu ZW; Wu ZJ; Li H; Zhuang J PLoS One; 2016; 11(11):e0166727. PubMed ID: 27855193 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). Wei K; Wang LY; Wu LY; Zhang CC; Li HL; Tan LQ; Cao HL; Cheng H PLoS One; 2014; 9(9):e107201. PubMed ID: 25216187 [TBL] [Abstract][Full Text] [Related]
37. Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants ( Zhang X; Ran W; Zhang J; Ye M; Lin S; Li X; Sultana R; Sun X Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167605 [TBL] [Abstract][Full Text] [Related]
38. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.). Li Q; Li J; Liu S; Huang J; Lin H; Wang K; Cheng X; Liu Z Int J Mol Sci; 2015 Jun; 16(6):14007-38. PubMed ID: 26096006 [TBL] [Abstract][Full Text] [Related]
39. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations. Zhu B; Chen LB; Lu M; Zhang J; Han J; Deng WW; Zhang ZZ J Agric Food Chem; 2019 Mar; 67(12):3400-3411. PubMed ID: 30830771 [TBL] [Abstract][Full Text] [Related]
40. JA-Ile-macrolactone 5b Induces Tea Plant ( Lin S; Dong Y; Li X; Xing Y; Liu M; Sun X Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]