These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
988 related articles for article (PubMed ID: 27098524)
41. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea ( Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988 [TBL] [Abstract][Full Text] [Related]
42. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. Li FD; Tong W; Xia EH; Wei CL BMC Bioinformatics; 2019 Nov; 20(1):553. PubMed ID: 31694521 [TBL] [Abstract][Full Text] [Related]
43. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092 [TBL] [Abstract][Full Text] [Related]
44. Genome-wide identification and expression analysis of Guo Y; Qiao D; Yang C; Chen J; Li Y; Liang S; Lin K; Chen Z Plant Signal Behav; 2020 Oct; 15(10):1804684. PubMed ID: 32787495 [TBL] [Abstract][Full Text] [Related]
45. A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses. Xin Z; Zhang J; Ge L; Lei S; Han J; Zhang X; Li X; Sun X Gene; 2017 Jun; 615():18-24. PubMed ID: 28322995 [TBL] [Abstract][Full Text] [Related]
46. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis. Jiang X; Huang K; Zheng G; Hou H; Wang P; Jiang H; Zhao X; Li M; Zhang S; Liu Y; Gao L; Zhao L; Xia T Plant Sci; 2018 May; 270():209-220. PubMed ID: 29576074 [TBL] [Abstract][Full Text] [Related]
47. Global transcriptome profiles of Camellia sinensis during cold acclimation. Wang XC; Zhao QY; Ma CL; Zhang ZH; Cao HL; Kong YM; Yue C; Hao XY; Chen L; Ma JQ; Jin JQ; Li X; Yang YJ BMC Genomics; 2013 Jun; 14():415. PubMed ID: 23799877 [TBL] [Abstract][Full Text] [Related]
48. Physiological Changes and Differential Gene Expression of Tea Plants ( Wang Y; Li Y; Wang J; Xiang Z; Xi P; Zhao D DNA Cell Biol; 2021 Jul; 40(7):906-920. PubMed ID: 34129383 [TBL] [Abstract][Full Text] [Related]
49. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol. Xin Z; Ge L; Chen S; Sun X J Plant Res; 2019 Mar; 132(2):285-293. PubMed ID: 30758750 [TBL] [Abstract][Full Text] [Related]
50. Two New Polyphenol Oxidase Genes of Tea Plant ( Huang C; Zhang J; Zhang X; Yu Y; Bian W; Zeng Z; Sun X; Li X Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30115844 [TBL] [Abstract][Full Text] [Related]
51. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. Guo Y; Zhao S; Zhu C; Chang X; Yue C; Wang Z; Lin Y; Lai Z BMC Plant Biol; 2017 Nov; 17(1):211. PubMed ID: 29157225 [TBL] [Abstract][Full Text] [Related]
52. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Jeyaraj A; Elango T; Li X; Guo G RNA Biol; 2020 Oct; 17(10):1365-1382. PubMed ID: 32478595 [TBL] [Abstract][Full Text] [Related]
53. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. Qiu H; Zhu X; Wan H; Xu L; Zhang Q; Hou P; Fan Z; Lyu Y; Ni D; Usadel B; Fernie AR; Wen W J Agric Food Chem; 2020 May; 68(19):5483-5495. PubMed ID: 32302110 [TBL] [Abstract][Full Text] [Related]
54. Repressed Gene Expression of Photosynthetic Antenna Proteins Associated with Yellow Leaf Variation as Revealed by Bulked Segregant RNA-seq in Tea Plant Wang JY; Chen JD; Wang SL; Chen L; Ma CL; Yao MZ J Agric Food Chem; 2020 Jul; 68(30):8068-8079. PubMed ID: 32633946 [TBL] [Abstract][Full Text] [Related]
55. Identification of a Novel Gene Encoding the Specialized Alanine Decarboxylase in Tea ( Bai P; Wei K; Wang L; Zhang F; Ruan L; Li H; Wu L; Cheng H Molecules; 2019 Feb; 24(3):. PubMed ID: 30717241 [TBL] [Abstract][Full Text] [Related]
56. iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis). Wu ZJ; Ma HY; Zhuang J Mol Genet Genomics; 2018 Feb; 293(1):45-59. PubMed ID: 28852881 [TBL] [Abstract][Full Text] [Related]
57. Characterization and Alternative Splicing Profiles of the Lipoxygenase Gene Family in Tea Plant (Camellia sinensis). Zhu J; Wang X; Guo L; Xu Q; Zhao S; Li F; Yan X; Liu S; Wei C Plant Cell Physiol; 2018 Sep; 59(9):1765-1781. PubMed ID: 29726968 [TBL] [Abstract][Full Text] [Related]
58. Genomic Variance and Transcriptional Comparisons Reveal the Mechanisms of Leaf Color Affecting Palatability and Stressed Defense in Tea Plant. Wang X; Liu BY; Zhao Q; Sun X; Li Y; Duan Z; Miao X; Luo S; Li J Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31739562 [TBL] [Abstract][Full Text] [Related]
59. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610 [TBL] [Abstract][Full Text] [Related]
60. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Jing T; Du W; Gao T; Wu Y; Zhang N; Zhao M; Jin J; Wang J; Schwab W; Wan X; Song C Plant Cell Environ; 2021 Apr; 44(4):1178-1191. PubMed ID: 32713005 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]