These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27098833)

  • 1. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury.
    Funk LH; Hackett AR; Bunge MB; Lee JK
    J Neuroinflammation; 2016 Apr; 13(1):87. PubMed ID: 27098833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.
    Zhu Y; Soderblom C; Krishnan V; Ashbaugh J; Bethea JR; Lee JK
    Neurobiol Dis; 2015 Feb; 74():114-25. PubMed ID: 25461258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SU16f inhibits fibrotic scar formation and facilitates axon regeneration and locomotor function recovery after spinal cord injury by blocking the PDGFRβ pathway.
    Li Z; Yu S; Liu Y; Hu X; Li Y; Xiao Z; Chen Y; Tian D; Xu X; Cheng L; Zheng M; Jing J
    J Neuroinflammation; 2022 Apr; 19(1):95. PubMed ID: 35429978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibronectin Matrix Assembly after Spinal Cord Injury.
    Zhu Y; Soderblom C; Trojanowsky M; Lee DH; Lee JK
    J Neurotrauma; 2015 Aug; 32(15):1158-67. PubMed ID: 25492623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury.
    Cooper JG; Jeong SJ; McGuire TL; Sharma S; Wang W; Bhattacharyya S; Varga J; Kessler JA
    Neurobiol Dis; 2018 Aug; 116():60-68. PubMed ID: 29705186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo.
    Yuan J; Liu W; Zhu H; Chen Y; Zhang X; Li L; Chu W; Wen Z; Feng H; Lin J
    Brain Res; 2017 Jan; 1655():90-103. PubMed ID: 27865778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice.
    Huang LJ; Li G; Ding Y; Sun JH; Wu TT; Zhao W; Zeng YS
    Exp Neurol; 2019 Oct; 320():112965. PubMed ID: 31132364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fingolimod (FTY720) Hinders Interferon-γ-Mediated Fibrotic Scar Formation and Facilitates Neurological Recovery After Spinal Cord Injury.
    Li Y; Chen Y; Hu X; Ouyang F; Li J; Huang J; Ye J; Shan F; Luo Y; Yu S; Li Z; Yao F; Liu Y; Shi Y; Zheng M; Cheng L; Jing J
    J Neurotrauma; 2023 Dec; 40(23-24):2580-2595. PubMed ID: 36879472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse mast cell protease 4 suppresses scar formation after traumatic spinal cord injury.
    Vangansewinkel T; Lemmens S; Geurts N; Quanten K; Dooley D; Pejler G; Hendrix S
    Sci Rep; 2019 Mar; 9(1):3715. PubMed ID: 30842526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury.
    Yokota K; Kobayakawa K; Saito T; Hara M; Kijima K; Ohkawa Y; Harada A; Okazaki K; Ishihara K; Yoshida S; Kudo A; Iwamoto Y; Okada S
    Am J Pathol; 2017 Mar; 187(3):639-653. PubMed ID: 28082119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice.
    Jeong SJ; Cooper JG; Ifergan I; McGuire TL; Xu D; Hunter Z; Sharma S; McCarthy D; Miller SD; Kessler JA
    Neurobiol Dis; 2017 Dec; 108():73-82. PubMed ID: 28823935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decorin promotes plasminogen/plasmin expression within acute spinal cord injuries and by adult microglia in vitro.
    Davies JE; Tang X; Bournat JC; Davies SJ
    J Neurotrauma; 2006; 23(3-4):397-408. PubMed ID: 16629625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice.
    Yamagami T; Pleasure DE; Lam KS; Zhou CJ
    Biochem Biophys Res Commun; 2018 Feb; 496(4):1302-1307. PubMed ID: 29410176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury.
    Wanner IB; Anderson MA; Song B; Levine J; Fernandez A; Gray-Thompson Z; Ao Y; Sofroniew MV
    J Neurosci; 2013 Jul; 33(31):12870-86. PubMed ID: 23904622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury.
    Zhang C; Shao Q; Zhang Y; Liu W; Kang J; Jin Z; Huang N; Ning B
    CNS Neurosci Ther; 2024 Jul; 30(7):e14826. PubMed ID: 38973179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury.
    Yoshioka N; Hisanaga S; Kawano H
    J Comp Neurol; 2010 Sep; 518(18):3867-81. PubMed ID: 20653039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.