These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 27098855)

  • 1. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
    Roque A; Ponte I; Suau P
    Chromosoma; 2017 Feb; 126(1):83-91. PubMed ID: 27098855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between histone H1 structure and function.
    Roque A; Ponte I; Suau P
    Biochim Biophys Acta; 2016 Mar; 1859(3):444-54. PubMed ID: 26415976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of chromatin function through linker histone H1 variants.
    Kowalski A; Pałyga J
    Biol Cell; 2016 Dec; 108(12):339-356. PubMed ID: 27412812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
    Sridhar A; Orozco M; Collepardo-Guevara R
    Nucleic Acids Res; 2020 Jun; 48(10):5318-5331. PubMed ID: 32356891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation.
    Roque A; Ponte I; Arrondo JL; Suau P
    Nucleic Acids Res; 2008 Aug; 36(14):4719-26. PubMed ID: 18632762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.
    Hergeth SP; Schneider R
    EMBO Rep; 2015 Nov; 16(11):1439-53. PubMed ID: 26474902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance of intrinsic structural disorder in the histone H1 subtypes.
    Kowalski A
    Comput Biol Chem; 2015 Dec; 59 Pt A():16-27. PubMed ID: 26366527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylation-modulated communication between the H3 N-terminal tail domain and the intrinsically disordered H1 C-terminal domain.
    Hao F; Murphy KJ; Kujirai T; Kamo N; Kato J; Koyama M; Okamato A; Hayashi G; Kurumizaka H; Hayes JJ
    Nucleic Acids Res; 2020 Nov; 48(20):11510-11520. PubMed ID: 33125082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics.
    Izzo A; Schneider R
    Biochim Biophys Acta; 2016 Mar; 1859(3):486-95. PubMed ID: 26348411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
    Sarg B; Lopez R; Lindner H; Ponte I; Suau P; Roque A
    J Proteomics; 2015 Jan; 113():162-77. PubMed ID: 25452131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly disordered histone H1-DNA model complexes and their condensates.
    Turner AL; Watson M; Wilkins OG; Cato L; Travers A; Thomas JO; Stott K
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11964-11969. PubMed ID: 30301810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
    Sridhar A; Farr SE; Portella G; Schlick T; Orozco M; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7216-7224. PubMed ID: 32165536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3 Tail Modifications Alter Structure and Dynamics of the H1 C-Terminal Domain Within Nucleosomes.
    Das SK; Kumar A; Hao F; Cutter DiPiazza AR; Fang H; Lee TH; Hayes JJ
    J Mol Biol; 2023 Oct; 435(19):168242. PubMed ID: 37619707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.