BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 27098855)

  • 1. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
    Roque A; Ponte I; Suau P
    Chromosoma; 2017 Feb; 126(1):83-91. PubMed ID: 27098855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between histone H1 structure and function.
    Roque A; Ponte I; Suau P
    Biochim Biophys Acta; 2016 Mar; 1859(3):444-54. PubMed ID: 26415976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of chromatin function through linker histone H1 variants.
    Kowalski A; Pałyga J
    Biol Cell; 2016 Dec; 108(12):339-356. PubMed ID: 27412812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
    Sridhar A; Orozco M; Collepardo-Guevara R
    Nucleic Acids Res; 2020 Jun; 48(10):5318-5331. PubMed ID: 32356891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation.
    Roque A; Ponte I; Arrondo JL; Suau P
    Nucleic Acids Res; 2008 Aug; 36(14):4719-26. PubMed ID: 18632762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.
    Hergeth SP; Schneider R
    EMBO Rep; 2015 Nov; 16(11):1439-53. PubMed ID: 26474902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance of intrinsic structural disorder in the histone H1 subtypes.
    Kowalski A
    Comput Biol Chem; 2015 Dec; 59 Pt A():16-27. PubMed ID: 26366527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylation-modulated communication between the H3 N-terminal tail domain and the intrinsically disordered H1 C-terminal domain.
    Hao F; Murphy KJ; Kujirai T; Kamo N; Kato J; Koyama M; Okamato A; Hayashi G; Kurumizaka H; Hayes JJ
    Nucleic Acids Res; 2020 Nov; 48(20):11510-11520. PubMed ID: 33125082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics.
    Izzo A; Schneider R
    Biochim Biophys Acta; 2016 Mar; 1859(3):486-95. PubMed ID: 26348411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
    Sarg B; Lopez R; Lindner H; Ponte I; Suau P; Roque A
    J Proteomics; 2015 Jan; 113():162-77. PubMed ID: 25452131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly disordered histone H1-DNA model complexes and their condensates.
    Turner AL; Watson M; Wilkins OG; Cato L; Travers A; Thomas JO; Stott K
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11964-11969. PubMed ID: 30301810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
    Sridhar A; Farr SE; Portella G; Schlick T; Orozco M; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7216-7224. PubMed ID: 32165536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3 Tail Modifications Alter Structure and Dynamics of the H1 C-Terminal Domain Within Nucleosomes.
    Das SK; Kumar A; Hao F; Cutter DiPiazza AR; Fang H; Lee TH; Hayes JJ
    J Mol Biol; 2023 Oct; 435(19):168242. PubMed ID: 37619707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.