BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27099150)

  • 1. Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia.
    Johnson SM; Dempsey C; Chadwick A; Harrison S; Liu J; Di Y; McGinn OJ; Fiorillo M; Sotgia F; Lisanti MP; Parihar M; Krishnan S; Saha V
    Blood; 2016 Jul; 128(3):453-6. PubMed ID: 27099150
    [No Abstract]   [Full Text] [Related]  

  • 2. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL.
    Kong Y; Yoshida S; Saito Y; Doi T; Nagatoshi Y; Fukata M; Saito N; Yang SM; Iwamoto C; Okamura J; Liu KY; Huang XJ; Lu DP; Shultz LD; Harada M; Ishikawa F
    Leukemia; 2008 Jun; 22(6):1207-13. PubMed ID: 18418410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ActivinA: a new leukemia-promoting factor conferring migratory advantage to B-cell precursor-acute lymphoblastic leukemic cells.
    Portale F; Cricrì G; Bresolin S; Lupi M; Gaspari S; Silvestri D; Russo B; Marino N; Ubezio P; Pagni F; Vergani P; Kronnie GT; Valsecchi MG; Locatelli F; Rizzari C; Biondi A; Dander E; D'Amico G
    Haematologica; 2019 Mar; 104(3):533-545. PubMed ID: 30262563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malignant stem cells in childhood acute lymphoblastic leukemia: the stem cell concept revisited.
    Vormoor HJ
    Cell Cycle; 2009 Apr; 8(7):996-9. PubMed ID: 19270513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD19-antigen specific nanoscale liposomal formulation of a SYK P-site inhibitor causes apoptotic destruction of human B-precursor leukemia cells.
    Myers DE; Yiv S; Qazi S; Ma H; Cely I; Shahidzadeh A; Arellano M; Finestone E; Gaynon PS; Termuhlen A; Cheng J; Uckun FM
    Integr Biol (Camb); 2014 Aug; 6(8):766-80. PubMed ID: 24910947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells.
    Ma Z; Zhao X; Deng M; Huang Z; Wang J; Wu Y; Cui D; Liu Y; Liu R; Ouyang G
    Cell Rep; 2019 Feb; 26(6):1533-1543.e4. PubMed ID: 30726736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BCP-ALL blasts are not dependent on CD19 expression for leukaemic maintenance.
    Weiland J; Pal D; Case M; Irving J; Ponthan F; Koschmieder S; Heidenreich O; von Stackelberg A; Eckert C; Vormoor J; Elder A
    Leukemia; 2016 Sep; 30(9):1920-3. PubMed ID: 27055873
    [No Abstract]   [Full Text] [Related]  

  • 8. Good engraftment of B-cell precursor ALL in NOD-SCID mice.
    Baersch G; Möllers T; Hötte A; Dockhorn-Dworniczak B; Rübe C; Ritter J; Jürgens H; Vormoor J
    Klin Padiatr; 1997; 209(4):178-85. PubMed ID: 9293448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies.
    Ruella M; Barrett DM; Kenderian SS; Shestova O; Hofmann TJ; Perazzelli J; Klichinsky M; Aikawa V; Nazimuddin F; Kozlowski M; Scholler J; Lacey SF; Melenhorst JJ; Morrissette JJ; Christian DA; Hunter CA; Kalos M; Porter DL; June CH; Grupp SA; Gill S
    J Clin Invest; 2016 Oct; 126(10):3814-3826. PubMed ID: 27571406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic T cells transduced with chimeric anti-CD19 receptors prevent engraftment of primary lymphoblastic leukemia in vivo.
    Landmeier S; Altvater B; Pscherer S; Meltzer J; Sebire N; Pule M; Vera J; Hotfilder M; Juergens H; Vormoor J; Rossig C
    Leukemia; 2010 May; 24(5):1080-4. PubMed ID: 20220773
    [No Abstract]   [Full Text] [Related]  

  • 11. Loss of p19Arf in a Rag1(-/-) B-cell precursor population initiates acute B-lymphoblastic leukemia.
    Hauer J; Mullighan C; Morillon E; Wang G; Bruneau J; Brousse N; Lelorc'h M; Romana S; Boudil A; Tiedau D; Kracker S; Bushmann FD; Borkhardt A; Fischer A; Hacein-Bey-Abina S; Cavazzana-Calvo M
    Blood; 2011 Jul; 118(3):544-53. PubMed ID: 21622646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in bone marrow-derived stromal stem cells unmask latent malignancy.
    Houghton J; Li H; Fan X; Liu Y; Liu JH; Rao VP; Poutahidis T; Taylor CL; Jackson EA; Hewes C; Lyle S; Cerny A; Bowen G; Cerny J; Moore N; Kurt-Jones EA; Erdman SE
    Stem Cells Dev; 2010 Aug; 19(8):1153-66. PubMed ID: 20199238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties.
    le Viseur C; Hotfilder M; Bomken S; Wilson K; Röttgers S; Schrauder A; Rosemann A; Irving J; Stam RW; Shultz LD; Harbott J; Jürgens H; Schrappe M; Pieters R; Vormoor J
    Cancer Cell; 2008 Jul; 14(1):47-58. PubMed ID: 18598943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia.
    Pan C; Liu P; Ma D; Zhang S; Ni M; Fang Q; Wang J
    Biomed Pharmacother; 2020 Oct; 130():110610. PubMed ID: 34321159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Incorporation of Extracellular Vesicles from Mesenchymal Stromal Cells Into CD34
    Preciado S; Muntión S; Corchete LA; Ramos TL; de la Torre AG; Osugui L; Rico A; Espinosa-Lara N; Gastaca I; Díez-Campelo M; Del Cañizo C; Sánchez-Guijo F
    Stem Cells; 2019 Oct; 37(10):1357-1368. PubMed ID: 31184411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia.
    Hong D; Gupta R; Ancliff P; Atzberger A; Brown J; Soneji S; Green J; Colman S; Piacibello W; Buckle V; Tsuzuki S; Greaves M; Enver T
    Science; 2008 Jan; 319(5861):336-9. PubMed ID: 18202291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of engraftment and progression of acute lymphoblastic leukemia in individual NOD/SCID mice.
    Nijmeijer BA; Mollevanger P; van Zelderen-Bhola SL; Kluin-Nelemans HC; Willemze R; Falkenburg JH
    Exp Hematol; 2001 Mar; 29(3):322-9. PubMed ID: 11274760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of exosomes derived from B-cell acute lymphoblastic leukemia as a growth factor on bone marrow mesenchymal stromal cells.
    Amirpour M; Kuhestani-Dehaghi B; Kheyrandish S; Hajipirloo LK; Khaffafpour Z; Keshavarz F; Allahbakhshian-Farsani M
    Mol Biol Rep; 2024 Jun; 51(1):749. PubMed ID: 38874800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.
    Carretta M; de Boer B; Jaques J; Antonelli A; Horton SJ; Yuan H; de Bruijn JD; Groen RWJ; Vellenga E; Schuringa JJ
    Exp Hematol; 2017 Jul; 51():36-46. PubMed ID: 28456746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3.
    Fei F; Joo EJ; Tarighat SS; Schiffer I; Paz H; Fabbri M; Abdel-Azim H; Groffen J; Heisterkamp N
    Oncotarget; 2015 May; 6(13):11378-94. PubMed ID: 25869099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.