These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 27099629)
1. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Fu J; Huo G; Feng L; Mao Y; Wang Z; Ma H; Chen T; Zhao X Biotechnol Biofuels; 2016; 9():90. PubMed ID: 27099629 [TBL] [Abstract][Full Text] [Related]
2. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512 [TBL] [Abstract][Full Text] [Related]
3. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Qiu Y; Zhang J; Li L; Wen Z; Nomura CT; Wu S; Chen S Biotechnol Biofuels; 2016; 9():117. PubMed ID: 27257436 [TBL] [Abstract][Full Text] [Related]
4. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331 [TBL] [Abstract][Full Text] [Related]
5. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Qi G; Kang Y; Li L; Xiao A; Zhang S; Wen Z; Xu D; Chen S Biotechnol Biofuels; 2014 Jan; 7(1):16. PubMed ID: 24475980 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766 [TBL] [Abstract][Full Text] [Related]
7. Production of (2R, 3R)-2,3-butanediol using engineered Yang Z; Zhang Z Biotechnol Biofuels; 2018; 11():35. PubMed ID: 29449883 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Yang T; Rao Z; Hu G; Zhang X; Liu M; Dai Y; Xu M; Xu Z; Yang ST Biotechnol Biofuels; 2015; 8():129. PubMed ID: 26312069 [TBL] [Abstract][Full Text] [Related]
9. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. Park JM; Rathnasingh C; Song H J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527 [TBL] [Abstract][Full Text] [Related]
11. Efficient (3R)-Acetoin Production from Guo Z; Zhao X; He Y; Yang T; Gao H; Li G; Chen F; Sun M; Lee JK; Zhang L J Microbiol Biotechnol; 2017 Jan; 27(1):92-100. PubMed ID: 27713210 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine. Meng W; Wang R; Xiao D Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762 [TBL] [Abstract][Full Text] [Related]
13. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Liu Z; Qin J; Gao C; Hua D; Ma C; Li L; Wang Y; Xu P Bioresour Technol; 2011 Nov; 102(22):10741-4. PubMed ID: 21945208 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652 [TBL] [Abstract][Full Text] [Related]
15. Process optimization for mass production of 2,3-butanediol by Bacillus subtilis CS13. Wang D; Oh BR; Lee S; Kim DH; Joe MH Biotechnol Biofuels; 2021 Jan; 14(1):15. PubMed ID: 33419471 [TBL] [Abstract][Full Text] [Related]
16. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
17. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588 [TBL] [Abstract][Full Text] [Related]
18. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. Gao Y; Huang H; Chen S; Qi G World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256 [TBL] [Abstract][Full Text] [Related]
19. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Romero S; Merino E; Bolívar F; Gosset G; Martinez A Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]