BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27099629)

  • 1. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production.
    Fu J; Huo G; Feng L; Mao Y; Wang Z; Ma H; Chen T; Zhao X
    Biotechnol Biofuels; 2016; 9():90. PubMed ID: 27099629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions.
    Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X
    Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.
    Qiu Y; Zhang J; Li L; Wen Z; Nomura CT; Wu S; Chen S
    Biotechnol Biofuels; 2016; 9():117. PubMed ID: 27257436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis.
    Qi G; Kang Y; Li L; Xiao A; Zhang S; Wen Z; Xu D; Chen S
    Biotechnol Biofuels; 2014 Jan; 7(1):16. PubMed ID: 24475980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol.
    Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T
    Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of (2R, 3R)-2,3-butanediol using engineered
    Yang Z; Zhang Z
    Biotechnol Biofuels; 2018; 11():35. PubMed ID: 29449883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels.
    Yang T; Rao Z; Hu G; Zhang X; Liu M; Dai Y; Xu M; Xu Z; Yang ST
    Biotechnol Biofuels; 2015; 8():129. PubMed ID: 26312069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method.
    Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z
    Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient (3R)-Acetoin Production from
    Guo Z; Zhao X; He Y; Yang T; Gao H; Li G; Chen F; Sun M; Lee JK; Zhang L
    J Microbiol Biotechnol; 2017 Jan; 27(1):92-100. PubMed ID: 27713210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis.
    Liu Z; Qin J; Gao C; Hua D; Ma C; Li L; Wang Y; Xu P
    Bioresour Technol; 2011 Nov; 102(22):10741-4. PubMed ID: 21945208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.
    Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P
    Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process optimization for mass production of 2,3-butanediol by Bacillus subtilis CS13.
    Wang D; Oh BR; Lee S; Kim DH; Joe MH
    Biotechnol Biofuels; 2021 Jan; 14(1):15. PubMed ID: 33419471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.
    Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains.
    Gao Y; Huang H; Chen S; Qi G
    World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.
    Romero S; Merino E; Bolívar F; Gosset G; Martinez A
    Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.