These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27099629)

  • 41. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    Microb Cell Fact; 2015 Aug; 14():122. PubMed ID: 26296537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of two metabolic engineering approaches for (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis.
    Vikromvarasiri N; Noda S; Shirai T; Kondo A
    J Biol Eng; 2023 Jan; 17(1):3. PubMed ID: 36627686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production.
    Wang Q; Chen T; Zhao X; Chamu J
    Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
    Kim DK; Rathnasingh C; Song H; Lee HJ; Seung D; Chang YK
    J Biosci Bioeng; 2013 Aug; 116(2):186-92. PubMed ID: 23643345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production.
    Rathnasingh C; Park JM; Kim DK; Song H; Chang YK
    Biotechnol Lett; 2016 Jun; 38(6):975-82. PubMed ID: 26886192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Liang K; Shen CR
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and enzymatic characterization of Bacillus subtilis R,R-2,3-butanediol dehydrogenase.
    Wang X; Jia L; Ji F
    Biochim Biophys Acta Gen Subj; 2023 Apr; 1867(4):130326. PubMed ID: 36781054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Jin YS; Seo JH
    Bioresour Technol; 2013 Oct; 146():274-281. PubMed ID: 23941711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Rao Z; Yang T; Xu M; Xu Z; Li H; Yang S
    Metab Eng; 2014 May; 23():34-41. PubMed ID: 24525333
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase.
    Li Y; Zhao X; Yao M; Yang W; Han Y; Liu L; Zhang J; Liu J
    Microb Cell Fact; 2023 Aug; 22(1):165. PubMed ID: 37644496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene.
    Ji XJ; Huang H; Zhu JG; Ren LJ; Nie ZK; Du J; Li S
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1751-8. PubMed ID: 19756578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced production of 2,3-butanediol by engineered
    Kim JW; Kim J; Seo SO; Kim KH; Jin YS; Seo JH
    Biotechnol Biofuels; 2016; 9():265. PubMed ID: 27990176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.
    He Y; Chen F; Sun M; Gao H; Guo Z; Lin H; Chen J; Jin W; Yang Y; Zhang L; Yuan J
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29562693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.
    Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L
    Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase.
    Ui S; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 1999 Jun; 28(6):457-60. PubMed ID: 10389264
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Production of 2,3-butanediol by a Mutant Strain of the Newly Isolated
    Rahman MS; Xu CC; Ma K; Nanda M; Qin W
    Int J Biol Sci; 2017; 13(3):308-318. PubMed ID: 28367095
    [TBL] [Abstract][Full Text] [Related]  

  • 60. budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol.
    Guo X; Fang H; Zhuge B; Zong H; Song J; Zhuge J; Du X
    Biotechnol Appl Biochem; 2013; 60(6):557-63. PubMed ID: 23586646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.