These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27099633)
1. The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Kines KJ; Sokolowski M; deHaro DL; Christian CM; Baddoo M; Smither ME; Belancio VP Mob DNA; 2016; 7():8. PubMed ID: 27099633 [TBL] [Abstract][Full Text] [Related]
2. Involvement of Conserved Amino Acids in the C-Terminal Region of LINE-1 ORF2p in Retrotransposition. Christian CM; Sokolowski M; deHaro D; Kines KJ; Belancio VP Genetics; 2017 Mar; 205(3):1139-1149. PubMed ID: 28100588 [TBL] [Abstract][Full Text] [Related]
3. Development of a monoclonal antibody specific to the endonuclease domain of the human LINE-1 ORF2 protein. Sokolowski M; DeFreece CB; Servant G; Kines KJ; deHaro DL; Belancio VP Mob DNA; 2014; 5(1):29. PubMed ID: 25606060 [TBL] [Abstract][Full Text] [Related]
4. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Kines KJ; Sokolowski M; deHaro DL; Christian CM; Belancio VP Nucleic Acids Res; 2014; 42(16):10488-502. PubMed ID: 25143528 [TBL] [Abstract][Full Text] [Related]
5. Identification of L1 ORF2p sequence important to retrotransposition using Bipartile Alu retrotransposition (BAR). Christian CM; deHaro D; Kines KJ; Sokolowski M; Belancio VP Nucleic Acids Res; 2016 Jun; 44(10):4818-34. PubMed ID: 27095191 [TBL] [Abstract][Full Text] [Related]
6. Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Ade CM; Derbes RS; Wagstaff BJ; Linker SB; White TB; Deharo D; Belancio VP; Ivics Z; Roy-Engel AM Gene; 2018 Feb; 642():188-198. PubMed ID: 29154869 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. Wagstaff BJ; Barnerssoi M; Roy-Engel AM PLoS One; 2011 May; 6(5):e19672. PubMed ID: 21572950 [TBL] [Abstract][Full Text] [Related]
8. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition. Kroutter EN; Belancio VP; Wagstaff BJ; Roy-Engel AM PLoS Genet; 2009 Apr; 5(4):e1000458. PubMed ID: 19390602 [TBL] [Abstract][Full Text] [Related]
9. The importance of L1 ORF2p cryptic sequence to ORF2p fragment-mediated cytotoxicity. Christian CM; Kines KJ; Belancio VP Mob Genet Elements; 2016; 6(4):e1198300. PubMed ID: 27583184 [TBL] [Abstract][Full Text] [Related]
10. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Feng Q; Moran JV; Kazazian HH; Boeke JD Cell; 1996 Nov; 87(5):905-16. PubMed ID: 8945517 [TBL] [Abstract][Full Text] [Related]
11. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Kines KJ; Sokolowski M; DeFreece C; Shareef A; deHaro DL; Belancio VP Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397133 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Flasch DA; Macia Á; Sánchez L; Ljungman M; Heras SR; García-Pérez JL; Wilson TE; Moran JV Cell; 2019 May; 177(4):837-851.e28. PubMed ID: 30955886 [TBL] [Abstract][Full Text] [Related]
13. Human L1 element target-primed reverse transcription in vitro. Cost GJ; Feng Q; Jacquier A; Boeke JD EMBO J; 2002 Nov; 21(21):5899-910. PubMed ID: 12411507 [TBL] [Abstract][Full Text] [Related]
14. Feedback inhibition of L1 and alu retrotransposition through altered double strand break repair kinetics. Wallace NA; Belancio VP; Faber Z; Deininger P Mob DNA; 2010 Oct; 1(1):22. PubMed ID: 20979631 [TBL] [Abstract][Full Text] [Related]
15. The minimal active human SVA retrotransposon requires only the 5'-hexamer and Alu-like domains. Hancks DC; Mandal PK; Cheung LE; Kazazian HH Mol Cell Biol; 2012 Nov; 32(22):4718-26. PubMed ID: 23007156 [TBL] [Abstract][Full Text] [Related]
16. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Savage AL; Lopez AI; Iacoangeli A; Bubb VJ; Smith B; Troakes C; Alahmady N; Koks S; Schumann GG; Al-Chalabi A; Quinn JP Mol Brain; 2020 Nov; 13(1):154. PubMed ID: 33187550 [TBL] [Abstract][Full Text] [Related]
17. Template and target-site recognition by human LINE-1 in retrotransposition. Thawani A; Ariza AJF; Nogales E; Collins K Nature; 2024 Feb; 626(7997):186-193. PubMed ID: 38096901 [TBL] [Abstract][Full Text] [Related]
18. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Moldovan JB; Kopera HC; Liu Y; Garcia-Canadas M; Catalina P; Leone PE; Sanchez L; Kitzman JO; Kidd JM; Garcia-Perez JL; Moran JV bioRxiv; 2024 May; ():. PubMed ID: 38746229 [No Abstract] [Full Text] [Related]
19. Comprehensive Scanning Mutagenesis of Human Retrotransposon LINE-1 Identifies Motifs Essential for Function. Adney EM; Ochmann MT; Sil S; Truong DM; Mita P; Wang X; Kahler DJ; Fenyö D; Holt LJ; Boeke JD Genetics; 2019 Dec; 213(4):1401-1414. PubMed ID: 31666291 [TBL] [Abstract][Full Text] [Related]
20. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition. Ariumi Y Front Chem; 2016; 4():28. PubMed ID: 27446907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]