These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27100018)
1. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Yang SX; Liao B; Yang ZH; Chai LY; Li JT Sci Total Environ; 2016 Aug; 562():427-434. PubMed ID: 27100018 [TBL] [Abstract][Full Text] [Related]
2. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland. Yang SX; Liao B; Li JT; Guo T; Shu WS Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil. Yang SX; Li JT; Yang B; Liao B; Zhang JT; Shu WS J Environ Monit; 2011 Jul; 13(7):1876-83. PubMed ID: 21607275 [TBL] [Abstract][Full Text] [Related]
4. Agro-industrial wastes as effective amendments for ecotoxicity reduction and soil health improvement in aided phytostabilization. Galende MA; Becerril JM; Gómez-Sagasti MT; Barrutia O; Garbisu C; Hernández A Environ Sci Pollut Res Int; 2014 Sep; 21(17):10036-44. PubMed ID: 24870283 [TBL] [Abstract][Full Text] [Related]
5. Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China. Liu J; Zhang XH; Li TY; Wu QX; Jin ZJ Environ Monit Assess; 2014 Apr; 186(4):2269-79. PubMed ID: 24271720 [TBL] [Abstract][Full Text] [Related]
6. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. Valentín-Vargas A; Root RA; Neilson JW; Chorover J; Maier RM Sci Total Environ; 2014 Dec; 500-501():314-24. PubMed ID: 25237788 [TBL] [Abstract][Full Text] [Related]
7. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Wong MH Chemosphere; 2003 Feb; 50(6):775-80. PubMed ID: 12688490 [TBL] [Abstract][Full Text] [Related]
9. Chemical and ecotoxicological effects of the use of drinking-water treatment residuals for the remediation of soils degraded by mining activities. Alvarenga P; Ferreira C; Mourinha C; Palma P; de Varennes A Ecotoxicol Environ Saf; 2018 Oct; 161():281-289. PubMed ID: 29886315 [TBL] [Abstract][Full Text] [Related]
10. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation. Pardo T; Bes C; Bernal MP; Clemente R Environ Toxicol Chem; 2016 Nov; 35(11):2874-2884. PubMed ID: 27019401 [TBL] [Abstract][Full Text] [Related]
11. Revegetation approach and plant identity unequally affect structure, ecological network and function of soil microbial community in a highly acidified mine tailings pond. Zhou WH; Wang YT; Lian ZH; Yang TT; Zeng QW; Feng SW; Fang Z; Shu WS; Huang LN; Ye ZH; Liao B; Li JT Sci Total Environ; 2020 Nov; 744():140793. PubMed ID: 32688002 [TBL] [Abstract][Full Text] [Related]
12. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Wu Q; Wang S; Thangavel P; Li Q; Zheng H; Bai J; Qiu R Int J Phytoremediation; 2011 Sep; 13(8):788-804. PubMed ID: 21972519 [TBL] [Abstract][Full Text] [Related]
13. A review on in situ phytoremediation of mine tailings. Wang L; Ji B; Hu Y; Liu R; Sun W Chemosphere; 2017 Oct; 184():594-600. PubMed ID: 28623832 [TBL] [Abstract][Full Text] [Related]
14. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment. Kumar A; Maiti SK Int J Phytoremediation; 2015; 17(1-6):437-47. PubMed ID: 25495934 [TBL] [Abstract][Full Text] [Related]
15. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil. Alvarenga P; de Varennes A; Cunha-Queda AC Int J Phytoremediation; 2014; 16(2):138-54. PubMed ID: 24912206 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Epelde L; Becerril JM; Mijangos I; Garbisu C J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147 [TBL] [Abstract][Full Text] [Related]
17. Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Wang X; Liu Y; Zeng G; Chai L; Xiao X; Song X; Min Z Chemosphere; 2008 Jul; 72(9):1260-6. PubMed ID: 18555510 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Barrutia O; Epelde L; García-Plazaola JI; Garbisu C; Becerril JM Chemosphere; 2009 Jan; 74(2):259-64. PubMed ID: 18951609 [TBL] [Abstract][Full Text] [Related]
19. Restoration of rare earth mine areas: organic amendments and phytoremediation. Zhou L; Li Z; Liu W; Liu S; Zhang L; Zhong L; Luo X; Liang H Environ Sci Pollut Res Int; 2015 Nov; 22(21):17151-60. PubMed ID: 26139395 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Benidire L; Madline A; Pereira SIA; Castro PML; Boularbah A Chemosphere; 2021 Jan; 262():127803. PubMed ID: 32755694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]