These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 27100330)
21. Exploring the production of bio-energy from wood biomass. Italian case study. González-García S; Bacenetti J Sci Total Environ; 2019 Jan; 647():158-168. PubMed ID: 30077846 [TBL] [Abstract][Full Text] [Related]
22. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Yang N; Zhang H; Shao LM; Lü F; He PJ J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116 [TBL] [Abstract][Full Text] [Related]
23. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran. Farahani SS; Asoodar MA Environ Sci Pollut Res Int; 2017 Oct; 24(28):22547-22556. PubMed ID: 28804804 [TBL] [Abstract][Full Text] [Related]
24. Role of the Freight Sector in Future Climate Change Mitigation Scenarios. Muratori M; Smith SJ; Kyle P; Link R; Mignone BK; Kheshgi HS Environ Sci Technol; 2017 Mar; 51(6):3526-3533. PubMed ID: 28240022 [TBL] [Abstract][Full Text] [Related]
25. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios. Mullins KA; Venkatesh A; Nagengast AL; Kocoloski M Environ Sci Technol; 2014; 48(5):2561-8. PubMed ID: 24512511 [TBL] [Abstract][Full Text] [Related]
26. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
27. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs. Weinberg J; Kaltschmitt M Bioresour Technol; 2013 Dec; 150():420-8. PubMed ID: 24012134 [TBL] [Abstract][Full Text] [Related]
28. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. De Vries JW; Groenestein CM; De Boer IJ J Environ Manage; 2012 Jul; 102():173-83. PubMed ID: 22459014 [TBL] [Abstract][Full Text] [Related]
29. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues. Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274 [TBL] [Abstract][Full Text] [Related]
30. Life-cycle assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia. Nie Y; Bi X Biotechnol Biofuels; 2018; 11():23. PubMed ID: 29434666 [TBL] [Abstract][Full Text] [Related]
31. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets. Cederberg C; Hedenus F; Wirsenius S; Sonesson U Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741 [TBL] [Abstract][Full Text] [Related]
32. Global warming contributions from alternative approaches to waste management in the Norwegian Armed Forces. Myhre O; Reistad T; Longva KS Waste Manag Res; 2011 Oct; 29(10):1098-107. PubMed ID: 21746758 [TBL] [Abstract][Full Text] [Related]
33. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. Zhao W; van der Voet E; Zhang Y; Huppes G Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268 [TBL] [Abstract][Full Text] [Related]
34. Assessing the Climate Change Mitigation Potential of Stationary Energy Storage for Electricity Grid Services. Jones C; Gilbert P; Stamford L Environ Sci Technol; 2020 Jan; 54(1):67-75. PubMed ID: 31804812 [TBL] [Abstract][Full Text] [Related]
35. Energy-related GHG emissions balances: IPCC versus LCA. Cellura M; Cusenza MA; Longo S Sci Total Environ; 2018 Jul; 628-629():1328-1339. PubMed ID: 30045554 [TBL] [Abstract][Full Text] [Related]
36. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Fine P; Hadas E Sci Total Environ; 2012 Feb; 416():289-99. PubMed ID: 22209373 [TBL] [Abstract][Full Text] [Related]
37. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Yang N; Zhang H; Chen M; Shao LM; He PJ Waste Manag; 2012 Dec; 32(12):2552-60. PubMed ID: 22796016 [TBL] [Abstract][Full Text] [Related]
38. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways. Rehl T; Müller J J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601 [TBL] [Abstract][Full Text] [Related]
39. Building-related health impacts in European and Chinese cities: a scalable assessment method. Tuomisto JT; Niittynen M; Pärjälä E; Asikainen A; Perez L; Trüeb S; Jantunen M; Künzli N; Sabel CE Environ Health; 2015 Dec; 14():93. PubMed ID: 26667475 [TBL] [Abstract][Full Text] [Related]
40. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production. Cooper DC; Sehlke G Environ Sci Technol; 2012 Mar; 46(6):3509-18. PubMed ID: 22283709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]