These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27100573)

  • 1. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.
    Blazevic A; Orlowska E; Kandioller W; Jirsa F; Keppler BK; Tafili-Kryeziu M; Linert W; Krachler RF; Krachler R; Rompel A
    Angew Chem Int Ed Engl; 2016 May; 55(22):6417-22. PubMed ID: 27100573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.
    Blazevic A; Orlowska E; Kandioller W; Jirsa F; Keppler BK; Tafili-Kryeziu M; Linert W; Krachler RF; Krachler R; Rompel A
    Angew Chem Weinheim Bergstr Ger; 2016 May; 128(22):6527-6532. PubMed ID: 27478277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. River-derived humic substances as iron chelators in seawater.
    Krachler R; Krachler RF; Wallner G; Hann S; Laux M; Cervantes Recalde MF; Jirsa F; Neubauer E; von der Kammer F; Hofmann T; Keppler BK
    Mar Chem; 2015 Aug; 174():85-93. PubMed ID: 26412934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Quantification of the Controlling Role of Humic Substances in the Transport of Iron Across the Surface of the Arctic Ocean.
    Laglera LM; Sukekava C; Slagter HA; Downes J; Aparicio-Gonzalez A; Gerringa LJA
    Environ Sci Technol; 2019 Nov; 53(22):13136-13145. PubMed ID: 31638387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Northern High-Latitude Organic Soils As a Vital Source of River-Borne Dissolved Iron to the Ocean.
    Krachler R; Krachler RF
    Environ Sci Technol; 2021 Jul; 55(14):9672-9690. PubMed ID: 34251212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural iron fertilization of the coastal ocean by "blackwater rivers".
    Krachler R; Krachler R; Valda A; Keppler BK
    Sci Total Environ; 2019 Mar; 656():952-958. PubMed ID: 30625681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.
    Mikutta C; Kretzschmar R
    Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.
    Batchelli S; Muller FL; Chang KC; Lee CL
    Environ Sci Technol; 2010 Nov; 44(22):8485-90. PubMed ID: 20964358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of humic substances on iron distribution in the East China Sea.
    Su H; Yang R; Li Y; Wang X
    Chemosphere; 2018 Aug; 204():450-462. PubMed ID: 29679866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.
    Fujii M; Imaoka A; Yoshimura C; Waite TD
    Environ Sci Technol; 2014 Apr; 48(8):4414-24. PubMed ID: 24635730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron.
    Gaberell M; Chin YP; Hug SJ; Sulzberger B
    Environ Sci Technol; 2003 Oct; 37(19):4403-9. PubMed ID: 14572092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation.
    Li H; Ding S; Song W; Wang X; Ding J; Lu J
    J Environ Manage; 2022 Nov; 321():115942. PubMed ID: 35985265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling.
    Jiang J; Kappler A
    Environ Sci Technol; 2008 May; 42(10):3563-9. PubMed ID: 18546690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.
    Muller FL; Cuscov M
    Environ Sci Technol; 2017 Mar; 51(6):3214-3222. PubMed ID: 28218520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.