BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27100673)

  • 1. An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades.
    Okamoto Y; Köhler V; Ward TR
    J Am Chem Soc; 2016 May; 138(18):5781-4. PubMed ID: 27100673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase.
    Hestericová M; Heinisch T; Lenz M; Ward TR
    Dalton Trans; 2018 Aug; 47(32):10837-10841. PubMed ID: 30019062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes.
    Köhler V; Wilson YM; Dürrenberger M; Ghislieri D; Churakova E; Quinto T; Knörr L; Häussinger D; Hollmann F; Turner NJ; Ward TR
    Nat Chem; 2013 Feb; 5(2):93-9. PubMed ID: 23344429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Catalytic Scope of a Well-Known Enzyme: Asymmetric Reduction of Iminium Substrates by Glucose Dehydrogenase.
    Roth S; Präg A; Wechsler C; Marolt M; Ferlaino S; Lüdeke S; Sandon N; Wetzl D; Iding H; Wirz B; Müller M
    Chembiochem; 2017 Sep; 18(17):1703-1706. PubMed ID: 28722796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed Evolution of an Artificial Imine Reductase.
    Hestericová M; Heinisch T; Alonso-Cotchico L; Maréchal JD; Vidossich P; Ward TR
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1863-1868. PubMed ID: 29265726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed evolution of artificial metalloenzymes: protein catalysts made to order.
    Creus M; Ward TR
    Org Biomol Chem; 2007 Jun; 5(12):1835-44. PubMed ID: 17551630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines.
    Dürrenberger M; Heinisch T; Wilson YM; Rossel T; Nogueira E; Knörr L; Mutschler A; Kersten K; Zimbron MJ; Pierron J; Schirmer T; Ward TR
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):3026-9. PubMed ID: 21404391
    [No Abstract]   [Full Text] [Related]  

  • 9. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design.
    Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR
    J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
    Letondor C; Humbert N; Ward TR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4683-7. PubMed ID: 15772162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an electrochemical NAD+ recycling system involving a string-like carbon fiber to an enzyme reactor.
    Maeda H; Seki T; Iwamura K; Anai Y
    Biosci Biotechnol Biochem; 2010; 74(9):1931-5. PubMed ID: 20834161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models.
    Wang J; Zhu ZH; Chen MW; Chen QA; Zhou YG
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1813-1817. PubMed ID: 30556234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired catalytic imine reduction by rhodium complexes with tethered Hantzsch pyridinium groups: evidence for direct hydride transfer from dihydropyridine to metal-activated substrate.
    McSkimming A; Bhadbhade MM; Colbran SB
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3411-6. PubMed ID: 23441069
    [No Abstract]   [Full Text] [Related]  

  • 17. Catalytic recycling of NAD(P)H.
    Fukuzumi S; Lee YM; Nam W
    J Inorg Biochem; 2019 Oct; 199():110777. PubMed ID: 31376683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of
    Hyun J; Abigail M; Choo JW; Ryu J; Kim HK
    J Microbiol Biotechnol; 2016 Oct; 26(10):1708-1716. PubMed ID: 27363470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2.
    Ogo S; Ichikawa K; Kishima T; Matsumoto T; Nakai H; Kusaka K; Ohhara T
    Science; 2013 Feb; 339(6120):682-4. PubMed ID: 23393260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.
    Robles VM; Dürrenberger M; Heinisch T; Lledós A; Schirmer T; Ward TR; Maréchal JD
    J Am Chem Soc; 2014 Nov; 136(44):15676-83. PubMed ID: 25317660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.