These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27100673)

  • 21. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration.
    Haquette P; Talbi B; Barilleau L; Madern N; Fosse C; Salmain M
    Org Biomol Chem; 2011 Aug; 9(16):5720-7. PubMed ID: 21695322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola.
    Hoag MR; Roman J; Beaupre BA; Silvaggi NR; Moran GR
    Biochemistry; 2015 Jun; 54(24):3791-802. PubMed ID: 26016690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties.
    Reeve HA; Lauterbach L; Ash PA; Lenz O; Vincent KA
    Chem Commun (Camb); 2012 Feb; 48(10):1589-91. PubMed ID: 21986817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm.
    Zhao J; Rebelein JG; Mallin H; Trindler C; Pellizzoni MM; Ward TR
    J Am Chem Soc; 2018 Oct; 140(41):13171-13175. PubMed ID: 30272972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordination chemistry of a model for the GP cofactor in the Hmd hydrogenase: hydrogen-bonding and hydrogen-transfer catalysis.
    Royer AM; Rauchfuss TB; Wilson SR
    Inorg Chem; 2008 Jan; 47(2):395-7. PubMed ID: 18081276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cascade reactions with two non-physiological partners for NAD(P)H regeneration via renewable hydrogen.
    Gasteazoro F; Catucci G; Barbieri L; De Angelis M; Dalla Costa A; Sadeghi SJ; Gilardi G; Valetti F
    Biotechnol J; 2024 Apr; 19(4):e2300567. PubMed ID: 38581100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin-avidin technology.
    Klein G; Humbert N; Gradinaru J; Ivanova A; Gilardoni F; Rusbandi UE; Ward TR
    Angew Chem Int Ed Engl; 2005 Dec; 44(47):7764-7. PubMed ID: 16276543
    [No Abstract]   [Full Text] [Related]  

  • 32. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation.
    Chen QA; Gao K; Duan Y; Ye ZS; Shi L; Yang Y; Zhou YG
    J Am Chem Soc; 2012 Feb; 134(4):2442-8. PubMed ID: 22239152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor.
    Betanzos-Lara S; Liu Z; Habtemariam A; Pizarro AM; Qamar B; Sadler PJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3897-900. PubMed ID: 22415924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
    Gamenara D; Domínguez de María P
    Org Biomol Chem; 2014 May; 12(19):2989-92. PubMed ID: 24695640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin.
    Pordea A; Creus M; Panek J; Duboc C; Mathis D; Novic M; Ward TR
    J Am Chem Soc; 2008 Jun; 130(25):8085-8. PubMed ID: 18507383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8.
    Fogal S; Beneventi E; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9541-54. PubMed ID: 26104866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.