These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27101068)

  • 1. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.
    Wang R; Zimmerman J
    Environ Sci Technol; 2016 May; 50(10):5143-53. PubMed ID: 27101068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Virtual) Water Flows Uphill toward Money.
    Wang R; Hertwich E; Zimmerman JB
    Environ Sci Technol; 2016 Nov; 50(22):12320-12330. PubMed ID: 27800688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Water Footprints of Consumption and Production in Transboundary River Basins at Country-Basin Mesh-Based Spatial Resolution.
    Wu X; Degefu DM; Yuan L; Liao Z; He W; An M; Zhang Z
    Int J Environ Res Public Health; 2019 Feb; 16(5):. PubMed ID: 30818781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of China's water footprint and virtual water trade: A global trade assessment.
    Tian X; Sarkis J; Geng Y; Qian Y; Gao C; Bleischwitz R; Xu Y
    Environ Int; 2018 Dec; 121(Pt 1):178-188. PubMed ID: 30216770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual water flows and trade liberalization.
    Ramirez-Vallejo J; Rogers P
    Water Sci Technol; 2004; 49(7):25-32. PubMed ID: 15195413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considering the Fate of Evaporated Water Across Basin Boundaries-Implications for Water Footprinting.
    Link A; Berger M; van der Ent R; Eisner S; Finkbeiner M
    Environ Sci Technol; 2021 Aug; 55(15):10231-10242. PubMed ID: 34264065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual scarce water in China.
    Feng K; Hubacek K; Pfister S; Yu Y; Sun L
    Environ Sci Technol; 2014 Jul; 48(14):7704-13. PubMed ID: 24922282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The water footprint of humanity.
    Hoekstra AY; Mekonnen MM
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3232-7. PubMed ID: 22331890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four billion people facing severe water scarcity.
    Mekonnen MM; Hoekstra AY
    Sci Adv; 2016 Feb; 2(2):e1500323. PubMed ID: 26933676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.
    Degefu DM; Weijun H; Zaiyi L; Liang Y; Zhengwei H; Min A
    Sci Rep; 2018 Feb; 8(1):2144. PubMed ID: 29391421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving forces and variation in water footprint before and after the COVID-19 lockdown in Fujian Province of China.
    Yu F; Wang Y; Liu X; Yu J; Zhao D; Deng H; Guo B; Shi R; Wu B; Chen H
    J Clean Prod; 2023 May; 402():136696. PubMed ID: 36942056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited water scarcity mitigation by expanded interbasin physical and virtual water diversions with uneven economic value added in China.
    Wang W; Zhuo L; Rulli MC; Wu P
    Sci Total Environ; 2022 Nov; 847():157625. PubMed ID: 35901876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.
    Zhao X; Yang H; Yang Z; Chen B; Qin Y
    Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual water trade and world water resources.
    Oki T; Kanae S
    Water Sci Technol; 2004; 49(7):203-9. PubMed ID: 15195440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic view on agricultural trade patterns and virtual water flows in Peru.
    Schwarz J; Mathijs E; Maertens M
    Sci Total Environ; 2019 Sep; 683():719-728. PubMed ID: 31150892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran.
    Bakhshianlamouki E; Masia S; Karimi P; van der Zaag P; Sušnik J
    Sci Total Environ; 2020 Mar; 708():134874. PubMed ID: 31796284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual Water Scarcity Risk to the Global Trade System.
    Qu S; Liang S; Konar M; Zhu Z; Chiu ASF; Jia X; Xu M
    Environ Sci Technol; 2018 Jan; 52(2):673-683. PubMed ID: 29231718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.
    Steen-Olsen K; Weinzettel J; Cranston G; Ercin AE; Hertwich EG
    Environ Sci Technol; 2012 Oct; 46(20):10883-91. PubMed ID: 23013466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The added value of water footprint assessment for national water policy: a case study for Morocco.
    Schyns JF; Hoekstra AY
    PLoS One; 2014; 9(6):e99705. PubMed ID: 24919194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.