BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27101101)

  • 1. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.
    Yaguchi J; Takeda N; Inaba K; Yaguchi S
    PLoS Genet; 2016 Apr; 12(4):e1006001. PubMed ID: 27101101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus.
    Yaguchi J; Yamazaki A; Yaguchi S
    Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.
    Range RC; Wei Z
    Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos.
    Yamazaki A; Yamamoto A; Yaguchi J; Yaguchi S
    Genesis; 2019 Jun; 57(6):e23302. PubMed ID: 31025827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
    Range RC; Angerer RC; Angerer LM
    PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mix family homeodomain gene bonnie and clyde functions with other components of the Nodal signaling pathway to regulate neural patterning in zebrafish.
    Trinh LA; Meyer D; Stainier DY
    Development; 2003 Oct; 130(20):4989-98. PubMed ID: 12930774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specification and positioning of the anterior neuroectoderm in deuterostome embryos.
    Range R
    Genesis; 2014 Mar; 52(3):222-34. PubMed ID: 24549984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
    Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM
    Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo.
    Yaguchi J; Angerer LM; Inaba K; Yaguchi S
    Dev Biol; 2012 Mar; 363(1):74-83. PubMed ID: 22210002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of nervous system patterning: insights from sea urchin development.
    Angerer LM; Yaguchi S; Angerer RC; Burke RD
    Development; 2011 Sep; 138(17):3613-23. PubMed ID: 21828090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
    Wei Z; Range R; Angerer R; Angerer L
    Development; 2012 May; 139(9):1662-9. PubMed ID: 22438568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis.
    Tanibe M; Michiue T; Yukita A; Danno H; Ikuzawa M; Ishiura S; Asashima M
    Int J Dev Biol; 2008; 52(7):893-901. PubMed ID: 18956319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo.
    Suzuki H; Yaguchi S
    Dev Growth Differ; 2018 May; 60(4):216-225. PubMed ID: 29878318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo.
    Martínez-Bartolomé M; Range RC
    Development; 2019 Dec; 146(24):. PubMed ID: 31822478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus.
    Xu S; Cheng F; Liang J; Wu W; Zhang J
    PLoS Biol; 2012; 10(3):e1001286. PubMed ID: 22448144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism.
    Takata N; Sakakura E; Eiraku M; Kasukawa T; Sasai Y
    Nat Commun; 2017 Nov; 8(1):1339. PubMed ID: 29109536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.