These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27101207)

  • 1. Progress in Fully Automated Abdominal CT Interpretation.
    Summers RM
    AJR Am J Roentgenol; 2016 Jul; 207(1):67-79. PubMed ID: 27101207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases.
    Wolz R; Chu C; Misawa K; Mori K; Rueckert D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):10-7. PubMed ID: 23285529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.
    Weston AD; Korfiatis P; Kline TL; Philbrick KA; Kostandy P; Sakinis T; Sugimoto M; Takahashi N; Erickson BJ
    Radiology; 2019 Mar; 290(3):669-679. PubMed ID: 30526356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated extraction of lymph nodes from 3-D abdominal CT images using 3-D minimum directional difference filter.
    Kitasaka T; Tsujimura Y; Nakamura Y; Mori K; Suenaga Y; Ito M; Nawano S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):336-43. PubMed ID: 18044586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular computing in model based abdominal organs detection.
    Juszczyk J; Pietka E; PyciƄski B
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():121-30. PubMed ID: 25804441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abdominal pain: coronal reformations from isotropic voxels with 16-section CT--reader lesion detection and interpretation time.
    Jaffe TA; Martin LC; Miller CM; Franklin KM; Merkle EM; Thompson WM; Nelson RC; DeLong DM; Paulson EK
    Radiology; 2007 Jan; 242(1):175-81. PubMed ID: 17185667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated image-matching technique for comparative diagnosis of the liver on CT examination.
    Okumura E; Sanada S; Suzuki M; Tsushima Y; Matsui O
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Dec; 61(12):1616-22. PubMed ID: 16395236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Region-based snake with edge constraint for segmentation of lymph nodes on CT images.
    Yu P; Poh CL
    Comput Biol Med; 2015 May; 60():86-91. PubMed ID: 25756705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation of the injured kidney due to abdominal trauma.
    Tulum G; Teomete U; Cuce F; Ergin T; Koksal M; Dandin O; Osman O
    J Med Syst; 2019 Nov; 44(1):5. PubMed ID: 31761960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends.
    Mansoor A; Bagci U; Foster B; Xu Z; Papadakis GZ; Folio LR; Udupa JK; Mollura DJ
    Radiographics; 2015; 35(4):1056-76. PubMed ID: 26172351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):275-82. PubMed ID: 24505771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of substructures in CT-images.
    Mir AH; Tandon SN; Hanmandlu M
    Biomed Sci Instrum; 1994; 30():9-14. PubMed ID: 7948656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
    Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA
    Med Image Anal; 2015 Aug; 24(1):18-27. PubMed ID: 26046403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-organ segmentation with missing organs in abdominal CT images.
    Suzuki M; Linguraru MG; Okada K
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):418-25. PubMed ID: 23286158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT image visualization: a conceptual introduction.
    Furlow B
    Radiol Technol; 2014; 86(2):187CT-204CT; quiz 205CT-207CT. PubMed ID: 25391680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral arteries: fully automated segmentation from CT angiography--a feasibility study.
    Manniesing R; Viergever MA; van der Lugt A; Niessen WJ
    Radiology; 2008 Jun; 247(3):841-6. PubMed ID: 18487538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation.
    Gordic S; Desbiolles L; Stolzmann P; Gantner L; Leschka S; Husarik DB; Alkadhi H
    Clin Radiol; 2014 Dec; 69(12):e497-504. PubMed ID: 25239788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.