These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27101274)

  • 1. The optical properties of mouse skin in the visible and near infrared spectral regions.
    Sabino CP; Deana AM; Yoshimura TM; da Silva DF; França CM; Hamblin MR; Ribeiro MS
    J Photochem Photobiol B; 2016 Jul; 160():72-8. PubMed ID: 27101274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow.
    Bartlett MF; Jordan SM; Hueber DM; Nelson MD
    J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions.
    Meglinski IV; Matcher SJ
    Physiol Meas; 2002 Nov; 23(4):741-53. PubMed ID: 12450273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Changes in Optical Properties (μ
    Zohdi H; Scholkmann F; Nasseri N; Wolf U
    Adv Exp Med Biol; 2018; 1072():331-337. PubMed ID: 30178367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy.
    Zonios G; Bykowski J; Kollias N
    J Invest Dermatol; 2001 Dec; 117(6):1452-7. PubMed ID: 11886508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of multi-biomarker optimized tissue-mimicking phantoms for multi-modal optical spectroscopy.
    Gautam R; Mac Mahon D; Eager G; Ma H; Guadagno CN; Andersson-Engels S; Konugolu Venkata Sekar S
    Analyst; 2023 Sep; 148(19):4768-4776. PubMed ID: 37665320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360 nm to 1020 nm.
    Lei B; Yao G
    Exp Eye Res; 2006 Sep; 83(3):610-4. PubMed ID: 16682025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optics of human skin.
    Anderson RR; Parrish JA
    J Invest Dermatol; 1981 Jul; 77(1):13-9. PubMed ID: 7252245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy.
    Tseng SH; Grant A; Durkin AJ
    J Biomed Opt; 2008; 13(1):014016. PubMed ID: 18315374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.
    Shaul O; Fanrazi-Kahana M; Meitav O; Pinhasi GA; Abookasis D
    Appl Opt; 2017 Nov; 56(32):8880-8886. PubMed ID: 29131171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm.
    Eggert HR; Blazek V
    Neurosurgery; 1987 Oct; 21(4):459-64. PubMed ID: 3683777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes.
    Roy A; Ramasubramaniam R; Gaonkar HA
    J Biomed Opt; 2012 Nov; 17(11):115006. PubMed ID: 23214177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine.
    Lualdi M; Colombo A; Farina B; Tomatis S; Marchesini R
    Lasers Surg Med; 2001; 28(3):237-43. PubMed ID: 11295758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep optical imaging of tissue using the second and third near-infrared spectral windows.
    Sordillo LA; Pu Y; Pratavieira S; Budansky Y; Alfano RR
    J Biomed Opt; 2014 May; 19(5):056004. PubMed ID: 24805808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared parameters extraction: A potential method to detect skin cancer.
    Truong BC; Tuan HD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():33-6. PubMed ID: 24109617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender variations in the optical properties of skin in murine animal models.
    Calabro K; Curtis A; Galarneau JR; Krucker T; Bigio IJ
    J Biomed Opt; 2011; 16(1):011008. PubMed ID: 21280895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties.
    Wilson RH; Nadeau KP; Jaworski FB; Rowland R; Nguyen JQ; Crouzet C; Saager RB; Choi B; Tromberg BJ; Durkin AJ
    J Biomed Opt; 2014 Aug; 19(8):086011. PubMed ID: 25120175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a six-around-one optical probe based on diffuse light spectroscopy for study of cerebral properties in a murine mouse model of autism spectrum disorder.
    Kozhuhov A; Tfilin M; Turgeman G; Ornoy A; Yanai J; Abookasis D
    Appl Opt; 2020 Aug; 59(23):6809-6816. PubMed ID: 32788771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature induced changes in the optical properties of skin in vivo.
    Iorizzo TW; Jermain PR; Salomatina E; Muzikansky A; Yaroslavsky AN
    Sci Rep; 2021 Jan; 11(1):754. PubMed ID: 33436982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.