BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27101277)

  • 1. Highly efficient energy transfer from quantum dot to allophycocyanin in hybrid structures.
    Karpulevich AA; Maksimov EG; Sluchanko NN; Vasiliev AN; Paschenko VZ
    J Photochem Photobiol B; 2016 Jul; 160():96-101. PubMed ID: 27101277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer.
    Schmitt FJ; Maksimov EG; Hätti P; Weißenborn J; Jeyasangar V; Razjivin AP; Paschenko VZ; Friedrich T; Renger G
    Biochim Biophys Acta; 2012 Aug; 1817(8):1461-70. PubMed ID: 22503663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.
    Ranjbar Choubeh R; Sonani RR; Madamwar D; Struik PC; Bader AN; Robert B; van Amerongen H
    Photosynth Res; 2018 Mar; 135(1-3):79-86. PubMed ID: 28755150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.
    Lukashev EP; Knox PP; Gorokhov VV; Grishanova NP; Seifullina NK; Krikunova M; Lokstein H; Paschenko VZ
    J Photochem Photobiol B; 2016 Nov; 164():73-82. PubMed ID: 27649453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.
    Jin S; Son HJ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(3):955-8. PubMed ID: 23293894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biocompatible and proton-resistant quantum dots assembled on gelatin nanospheres.
    Chen L; Siemiarczuk A; Hai H; Chen Y; Huang G; Zhang J
    Langmuir; 2014 Feb; 30(7):1893-9. PubMed ID: 24506768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid structures of polycationic aluminum phthalocyanines and quantum dots.
    Maksimov EG; Gvozdev DA; Strakhovskaya MG; Paschenko VZ
    Biochemistry (Mosc); 2015 Mar; 80(3):323-31. PubMed ID: 25761686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins.
    Hering VR; Gibson G; Schumacher RI; Faljoni-Alario A; Politi MJ
    Bioconjug Chem; 2007; 18(6):1705-8. PubMed ID: 17900163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of self-assembled and micelle encapsulated QD chemosensor constructs for biological sensing.
    Lemon CM; Nocera DG
    Faraday Discuss; 2015; 185():249-66. PubMed ID: 26399200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water soluble quantum dot nanoclusters: energy migration in artifical materials.
    Oh MH; Gentleman DJ; Scholes GD
    Phys Chem Chem Phys; 2006 Nov; 8(43):5079-85. PubMed ID: 17091158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature biological quantum random walk in phycocyanin nanowires.
    Eisenberg I; Yochelis S; Ben-Harosh R; David L; Faust A; Even-Dar N; Taha H; Haegel NM; Adir N; Keren N; Paltiel Y
    Phys Chem Chem Phys; 2014 Jun; 16(23):11245-50. PubMed ID: 24562323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots acting as energy acceptors with organic dyes as donors in solution.
    Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X
    Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot clusters as self-assembled antennae with phycocyanine and phycobilisomes as energy acceptors.
    Grzyb J; Walczewska-Szewc K; Sławski J; Trojnar M
    Phys Chem Chem Phys; 2021 Nov; 23(42):24505-24517. PubMed ID: 34700331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.
    Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL
    ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production.
    Huang J; Mulfort KL; Du P; Chen LX
    J Am Chem Soc; 2012 Oct; 134(40):16472-5. PubMed ID: 22989083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin.
    Krivenkov V; Samokhvalov P; Solovyeva D; Bilan R; Chistyakov A; Nabiev I
    Opt Lett; 2015 Apr; 40(7):1440-3. PubMed ID: 25831354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism.
    Burks PT; Ostrowski AD; Mikhailovsky AA; Chan EM; Wagenknecht PS; Ford PC
    J Am Chem Soc; 2012 Aug; 134(32):13266-75. PubMed ID: 22808899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.