These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 27101361)
1. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Guo Q; Xu M; Yuan Y; Gu R; Yao J Langmuir; 2016 May; 32(18):4530-7. PubMed ID: 27101361 [TBL] [Abstract][Full Text] [Related]
2. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film]. Hu DJ; Zhang XJ; Xu MM; Yao JL; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1262-5. PubMed ID: 26415440 [TBL] [Abstract][Full Text] [Related]
3. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field. Guo QH; Zhang CJ; Wei C; Xu MM; Yuan YX; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():336-42. PubMed ID: 26232577 [TBL] [Abstract][Full Text] [Related]
4. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection. Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504 [TBL] [Abstract][Full Text] [Related]
5. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Lee YH; Lee CK; Tan B; Rui Tan JM; Phang IY; Ling XY Nanoscale; 2013 Jul; 5(14):6404-12. PubMed ID: 23740152 [TBL] [Abstract][Full Text] [Related]
6. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
7. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates. Wang S; Tay LL; Liu H Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524 [TBL] [Abstract][Full Text] [Related]
9. Large-Area Monolayer Films of Hexagonal Close-Packed Au@Ag Nanoparticles as Substrates for SERS-Based Quantitative Determination. Xing L; Xiahou Y; Zhang X; Du W; Zhang P; Xia H ACS Appl Mater Interfaces; 2022 Mar; 14(11):13480-13489. PubMed ID: 35258923 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. Kim NY; Leem YC; Hong SH; Park JH; Yim SY ACS Appl Mater Interfaces; 2019 Feb; 11(6):6363-6373. PubMed ID: 30663309 [TBL] [Abstract][Full Text] [Related]
11. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S; Ahn M; Kim J Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Wen P; Yang F; Ge C; Li S; Xu Y; Chen L Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34161934 [TBL] [Abstract][Full Text] [Related]
13. Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array. Wang K; Sun DW; Pu H; Wei Q; Huang L ACS Appl Mater Interfaces; 2019 Aug; 11(32):29177-29186. PubMed ID: 31317741 [TBL] [Abstract][Full Text] [Related]
14. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
15. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Li C; Liu A; Zhang C; Wang M; Li Z; Xu S; Jiang S; Yu J; Yang C; Man B Opt Express; 2017 Aug; 25(17):20631-20641. PubMed ID: 29041742 [TBL] [Abstract][Full Text] [Related]
16. Free-Standing 2D Janus Gold Nanoparticles Monolayer Film with Tunable Bifacial Morphologies via the Asymmetric Growth at Air-Liquid Interface. Cheng Q; Song L; Lin H; Yang Y; Huang Y; Su F; Chen T Langmuir; 2020 Jan; 36(1):250-256. PubMed ID: 31697894 [TBL] [Abstract][Full Text] [Related]
17. The moveable "hot spots" effect in an Au nanoparticles-Au plate coupled system. Sun Y; Zhang C; Yuan Y; Xu M; Yao J Nanoscale; 2020 Dec; 12(46):23789-23798. PubMed ID: 33237087 [TBL] [Abstract][Full Text] [Related]
18. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering. Oh MK; Yun S; Kim SK; Park S Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470 [TBL] [Abstract][Full Text] [Related]
19. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates. Rao VK; Radhakrishnan TP ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates. Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]