These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27101412)

  • 1. Methanol oxidation on Fe2O3 catalysts and the effects of surface Mo.
    Bowker M; Gibson EK; Silverwood IP; Brookes C
    Faraday Discuss; 2016 Jul; 188():387-98. PubMed ID: 27101412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Al-doped Fe
    Bowker M; Hellier P; Decarolis D; Gianolio D; Mohammed KMH; Stenner A; Huthwelker T; Wells PP
    Phys Chem Chem Phys; 2020 Sep; 22(34):18911-18918. PubMed ID: 32469018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide.
    Bowker M; Brookes C; Carley AF; House MP; Kosif M; Sankar G; Wawata I; Wells PP; Yaseneva P
    Phys Chem Chem Phys; 2013 Aug; 15(29):12056-67. PubMed ID: 23552323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde.
    Chapman S; Brookes C; Bowker M; Gibson EK; Wells PP
    Faraday Discuss; 2016 Jul; 188():115-29. PubMed ID: 27067956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VO
    Hellier P; Wells PP; Gianolio D; Bowker M
    Top Catal; 2018; 61(5):357-364. PubMed ID: 31258303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study.
    Kähler K; Holz MC; Rohe M; Strunk J; Muhler M
    Chemphyschem; 2010 Aug; 11(12):2521-9. PubMed ID: 20635374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of diffuse reflectance infrared spectroscopy and temperature-programmed desorption to investigate the interaction of methanol on eta-alumina.
    McInroy AR; Lundie DT; Winfield JM; Dudman CC; Jones P; Lennon D
    Langmuir; 2005 Nov; 21(24):11092-8. PubMed ID: 16285776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Active Molybdenum Oxide Phase in the Methanol Oxidation to Formaldehyde (Formox Process): A DFT Study.
    Rellán-Piñeiro M; López N
    ChemSusChem; 2015 Jul; 8(13):2231-9. PubMed ID: 26083992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of complex model oxide catalysts: Mo oxide supported on Fe3o4(111).
    Bamroongwongdee C; Bowker M; Carley AF; Davies PR; Davies RJ; Edwards D
    Faraday Discuss; 2013; 162():201-12. PubMed ID: 24015585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
    Zhang CB; Shi XY; Gao HW; He H
    J Environ Sci (China); 2005; 17(3):429-32. PubMed ID: 16083117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface defects activating new reaction paths: formation of formate during methanol oxidation on Ru(0001).
    Palacio I; Rojo JM; Rodríguez de la Fuente O
    Chemphyschem; 2012 Jun; 13(9):2354-60. PubMed ID: 22517733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Conversion of Methanol to Methyl Formate on Graphene-Confined Nano-Oxides.
    Zhang Y; Liu G; Shi L; Wu P; Zeng G; Zhang C; Yang N; Li S; Sun Y
    iScience; 2020 Jun; 23(6):101157. PubMed ID: 32450511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [DRIFTS study of Cu1Zr1Ce9Odelta catalysts for selective CO oxidation].
    Zou HB; Chen SZ; Wang QY; Liu ZL; Lin WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2103-6. PubMed ID: 20939316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on CuO-CeO2 catalysts doped with alkali and alkaline earth metal oxides by in-situ DRIFTS].
    Zou HB; Chen SZ; Wang QY; Liu ZL; Lin WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):672-6. PubMed ID: 20496684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.
    Shi J; Mahr C; Murshed MM; Gesing TM; Rosenauer A; Bäumer M; Wittstock A
    Phys Chem Chem Phys; 2017 Mar; 19(13):8880-8888. PubMed ID: 28294235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total oxidation of methanol on Cu(110): a density functional theory study.
    Sakong S; Gross A
    J Phys Chem A; 2007 Sep; 111(36):8814-22. PubMed ID: 17705455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2 thin films.
    Bennett DA; Cargnello M; Gordon TR; Murray CB; Vohs JM
    Phys Chem Chem Phys; 2015 Jul; 17(26):17190-201. PubMed ID: 26073428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.
    Döbler J; Pritzsche M; Sauer J
    J Am Chem Soc; 2005 Aug; 127(31):10861-8. PubMed ID: 16076191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep oxidation of 1,2-dichlorobenzene over Ti-doped iron oxide.
    Ma X; Suo X; Cao H; Guo J; Lv L; Sun H; Zheng M
    Phys Chem Chem Phys; 2014 Jul; 16(25):12731-40. PubMed ID: 24832548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.