BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27101698)

  • 21. Bacillus minimum genome factory: effective utilization of microbial genome information.
    Ara K; Ozaki K; Nakamura K; Yamane K; Sekiguchi J; Ogasawara N
    Biotechnol Appl Biochem; 2007 Mar; 46(Pt 3):169-78. PubMed ID: 17115975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Inosine synthesis by Bacillus subtilis mutants and their development in synthetic media].
    Balitskaya RM; Kazarinova LA
    Prikl Biokhim Mikrobiol; 1975; 11(3):397-405. PubMed ID: 813200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
    Rückert C; Koch DJ; Rey DA; Albersmeier A; Mormann S; Pühler A; Kalinowski J
    BMC Genomics; 2005 Sep; 6():121. PubMed ID: 16159395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing.
    Zhang B; Li N; Wang Z; Tang YJ; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):885-96. PubMed ID: 25620468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Relationship between key enzyme activities of inosine-producing pathway and inosine accumulation].
    Song Y; Cai X; Chu J; Zhuang Y; Zhang S
    Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):361-5. PubMed ID: 16279203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential.
    Veith B; Herzberg C; Steckel S; Feesche J; Maurer KH; Ehrenreich P; Bäumer S; Henne A; Liesegang H; Merkl R; Ehrenreich A; Gottschalk G
    J Mol Microbiol Biotechnol; 2004; 7(4):204-11. PubMed ID: 15383718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of addition of bases and amino acids on inosine biosynthesis by mutants of Bacillus subtilis].
    Kazarinova LA; Lukin NS
    Prikl Biokhim Mikrobiol; 1976; 12(1):59-67. PubMed ID: 825851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic Diversity and Evolution of Bacillus subtilis.
    Yu G; Wang XC; Tian WH; Shi JC; Wang B; Ye Q; Dong SG; Zeng M; Wang JZ
    Biomed Environ Sci; 2015 Aug; 28(8):620-5. PubMed ID: 26383601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete genome sequencing and strain characterization of a novel marine Bacillus velezensis FTL7 with a potential broad inhibitory spectrum against foodborne pathogens.
    Johny LC; Suresh PV
    World J Microbiol Biotechnol; 2022 Jul; 38(9):164. PubMed ID: 35842870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes--a genomic approach.
    Moreno-Campuzano S; Janga SC; Pérez-Rueda E
    BMC Genomics; 2006 Jun; 7():147. PubMed ID: 16772031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies.
    Srivatsan A; Han Y; Peng J; Tehranchi AK; Gibbs R; Wang JD; Chen R
    PLoS Genet; 2008 Aug; 4(8):e1000139. PubMed ID: 18670626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis.
    Yi H; Chun J; Cha CJ
    Syst Appl Microbiol; 2014 Mar; 37(2):95-9. PubMed ID: 24231292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Quality Genome Resource of
    Long Y; Chen S; Xu X; Zhao W; Tang X; Zhang L; Zhang Q
    Phytopathology; 2023 Mar; 113(3):577-579. PubMed ID: 36378587
    [No Abstract]   [Full Text] [Related]  

  • 34. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto.
    Jiang C; Zhao G; Wang H; Zheng W; Zhang R; Wang L; Zheng Z
    Gene; 2024 May; 907():148264. PubMed ID: 38346457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view.
    Takami H; Horikoshi K
    Extremophiles; 2000 Apr; 4(2):99-108. PubMed ID: 10805564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecology and genomics of Bacillus subtilis.
    Earl AM; Losick R; Kolter R
    Trends Microbiol; 2008 Jun; 16(6):269-75. PubMed ID: 18467096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA sequence of the murE-murD region of Bacillus subtilis 168.
    Daniel RA; Errington J
    J Gen Microbiol; 1993 Feb; 139(2):361-70. PubMed ID: 8436954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Sequencing project of Bacillus subtilis genome].
    Ogasawara N
    Tanpakushitsu Kakusan Koso; 1993 Feb; 38(3):669-76. PubMed ID: 8488303
    [No Abstract]   [Full Text] [Related]  

  • 39. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR.
    Hsieh FC; Li MC; Lin TC; Kao SS
    Curr Microbiol; 2004 Sep; 49(3):186-91. PubMed ID: 15386102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic pathway analysis of walnut endophytic bacterium Bacillus subtilis HB1310 related to lipid production from fermentation of cotton stalk hydrolysate based on genome sequencing.
    Zhang Q; Liu P; Li Y; Jiang H
    Biotechnol Lett; 2021 Sep; 43(9):1883-1894. PubMed ID: 34228235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.