These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27101873)

  • 1. Comparing molecules and solids across structural and alchemical space.
    De S; Bartók AP; Csányi G; Ceriotti M
    Phys Chem Chem Phys; 2016 May; 18(20):13754-69. PubMed ID: 27101873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permutation-invariant distance between atomic configurations.
    Ferré G; Maillet JB; Stoltz G
    J Chem Phys; 2015 Sep; 143(10):104114. PubMed ID: 26374024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alchemical and structural distribution based representation for universal quantum machine learning.
    Faber FA; Christensen AS; Huang B; von Lilienfeld OA
    J Chem Phys; 2018 Jun; 148(24):241717. PubMed ID: 29960351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning molecular energies using localized graph kernels.
    Ferré G; Haut T; Barros K
    J Chem Phys; 2017 Mar; 146(11):114107. PubMed ID: 28330348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constant size descriptors for accurate machine learning models of molecular properties.
    Collins CR; Gordon GJ; von Lilienfeld OA; Yaron DJ
    J Chem Phys; 2018 Jun; 148(24):241718. PubMed ID: 29960361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical visualization of materials space with graph convolutional neural networks.
    Xie T; Grossman JC
    J Chem Phys; 2018 Nov; 149(17):174111. PubMed ID: 30409009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate modeling of molecular atomization energies with machine learning.
    Rupp M; Tkatchenko A; Müller KR; von Lilienfeld OA
    Phys Rev Lett; 2012 Feb; 108(5):058301. PubMed ID: 22400967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A local environment descriptor for machine-learned density functional theory at the generalized gradient approximation level.
    Ji H; Jung Y
    J Chem Phys; 2018 Jun; 148(24):241742. PubMed ID: 29960349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferability of atomic energies from alchemical decomposition.
    Sahre MJ; von Rudorff GF; Marquetand P; von Lilienfeld OA
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of atomization energy using graph kernel and active learning.
    Tang YH; de Jong WA
    J Chem Phys; 2019 Jan; 150(4):044107. PubMed ID: 30709286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids.
    Casier B; Chagas da Silva M; Badawi M; Pascale F; Bučko T; Lebègue S; Rocca D
    J Comput Chem; 2021 Jul; 42(20):1390-1401. PubMed ID: 34009668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning structure-property relationship in crystalline materials: A study of lanthanide-transition metal alloys.
    Pham TL; Nguyen ND; Nguyen VD; Kino H; Miyake T; Dam HC
    J Chem Phys; 2018 May; 148(20):204106. PubMed ID: 29865801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited.
    Zaspel P; Huang B; Harbrecht H; von Lilienfeld OA
    J Chem Theory Comput; 2019 Mar; 15(3):1546-1559. PubMed ID: 30516999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers.
    Chi M; Gargouri R; Schrader T; Damak K; Maâlej R; Sierka M
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.