BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27102286)

  • 1. Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for in vitro protein glycosylation.
    Luley-Goedl C; Schmoelzer K; Thomann M; Malik S; Greif M; Ribitsch D; Jung C; Sobek H; Engel A; Mueller R; Schwab H; Nidetzky B
    Glycobiology; 2016 Oct; 26(10):1097-1106. PubMed ID: 27102286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities.
    Ribitsch D; Zitzenbacher S; Augustin P; Schmölzer K; Czabany T; Luley-Goedl C; Thomann M; Jung C; Sobek H; Müller R; Nidetzky B; Schwab H
    Microb Cell Fact; 2014 Sep; 13(1):138. PubMed ID: 25365915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the CMP-Sialic Acid Donor Specificity of Two Human β-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins.
    Noel M; Gilormini PA; Cogez V; Yamakawa N; Vicogne D; Lion C; Biot C; Guérardel Y; Harduin-Lepers A
    Chembiochem; 2017 Jul; 18(13):1251-1259. PubMed ID: 28395125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans.
    Kuhn B; Benz J; Greif M; Engel AM; Sobek H; Rudolph MG
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1826-38. PubMed ID: 23999306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation.
    Meng L; Forouhar F; Thieker D; Gao Z; Ramiah A; Moniz H; Xiang Y; Seetharaman J; Milaninia S; Su M; Bridger R; Veillon L; Azadi P; Kornhaber G; Wells L; Montelione GT; Woods RJ; Tong L; Moremen KW
    J Biol Chem; 2013 Nov; 288(48):34680-98. PubMed ID: 24155237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases.
    Fukuta K; Yokomatsu T; Abe R; Asanagi M; Makino T
    Glycoconj J; 2000 Dec; 17(12):895-904. PubMed ID: 11511814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible sialylation: synthesis of cytidine 5'-monophospho-N-acetylneuraminic acid from cytidine 5'-monophosphate with alpha2,3-sialyl O-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products.
    Chandrasekaran EV; Xue J; Xia J; Locke RD; Matta KL; Neelamegham S
    Biochemistry; 2008 Jan; 47(1):320-30. PubMed ID: 18067323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody.
    Wang M; Wang Y; Liu K; Dou X; Liu Z; Zhang L; Ye XS
    Org Biomol Chem; 2020 Apr; 18(15):2886-2892. PubMed ID: 32236230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of α2,6-sialyltransferases for sialylation of therapeutic proteins.
    Janesch B; Saxena H; Sim L; Wakarchuk WW
    Glycobiology; 2019 Sep; 29(10):735-747. PubMed ID: 31281932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris.
    Luley-Goedl C; Czabany T; Longus K; Schmölzer K; Zitzenbacher S; Ribitsch D; Schwab H; Nidetzky B
    J Biotechnol; 2016 Oct; 235():54-60. PubMed ID: 27018228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene.
    Jones MB; Nasirikenari M; Lugade AA; Thanavala Y; Lau JT
    J Biol Chem; 2012 May; 287(19):15365-70. PubMed ID: 22427662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the specificity of sialyltransferases toward mucin core 2, globo, and related structures. identification of the sialylation sequence and the effects of sulfate, fucose, methyl, and fluoro substituents of the carbohydrate chain in the biosynthesis of selectin and siglec ligands, and novel sialylation by cloned alpha2,3(O)sialyltransferase.
    Chandrasekaran EV; Xue J; Xia J; Chawda R; Piskorz C; Locke RD; Neelamegham S; Matta KL
    Biochemistry; 2005 Nov; 44(47):15619-35. PubMed ID: 16300412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution.
    Harrus D; Harduin-Lepers A; Glumoff T
    J Struct Biol; 2020 Nov; 212(2):107628. PubMed ID: 32971290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death.
    Amano M; Galvan M; He J; Baum LG
    J Biol Chem; 2003 Feb; 278(9):7469-75. PubMed ID: 12499376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mouse sialyltransferase genes: their evolution and diversity.
    Takashima S
    Biosci Biotechnol Biochem; 2008 May; 72(5):1155-67. PubMed ID: 18460788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase.
    Legaigneur P; Breton C; El Battari A; Guillemot JC; Auge C; Malissard M; Berger EG; Ronin C
    J Biol Chem; 2001 Jun; 276(24):21608-17. PubMed ID: 11279145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polypeptide part of human chorionic gonadotrophin affects the kinetics of alpha 6-sialylation of its N-linked glycans but does not alter the branch specificity of CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase.
    Nemansky M; Edzes HT; Wijnands RA; Van den Eijnden DH
    Glycobiology; 1992 Apr; 2(2):109-17. PubMed ID: 1606356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma.
    Pousset D; Piller V; Bureaud N; Monsigny M; Piller F
    Cancer Res; 1997 Oct; 57(19):4249-56. PubMed ID: 9331085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of α2,3- and α2,6-sialyltransferases from Helicobacter acinonychis.
    Schur MJ; Lameignere E; Strynadka NC; Wakarchuk WW
    Glycobiology; 2012 Jul; 22(7):997-1006. PubMed ID: 22504533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobacterium sp. JT-ISH-224 produces two sialyltransferases, alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase.
    Tsukamoto H; Takakura Y; Mine T; Yamamoto T
    J Biochem; 2008 Feb; 143(2):187-97. PubMed ID: 17984122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.