BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2710264)

  • 1. Anemia and chronic renal failure: the possible role of the oxidative state of glutathione.
    Costagliola C; Romano L; Sorice P; Di Benedetto A
    Nephron; 1989; 52(1):11-4. PubMed ID: 2710264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic human diseases as oxidative risk factors in cataractogenesis. II. Chronic renal failure.
    Costagliola C; Iuliano G; Menzione M; Simonelli F; Tortori A; Masturzi B; di Benedetto A; Rinaldi E
    Exp Eye Res; 1990 Dec; 51(6):631-5. PubMed ID: 2265673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the oxidative state of glutathione and glutathione-related enzymes in anemia of hemodialysis patients.
    Paşaoğlu H; Muhtaroğlu S; Güneş M; Utaş C
    Clin Biochem; 1996 Dec; 29(6):567-72. PubMed ID: 8939405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative state of glutathione in red blood cells and plasma of diabetic patients: in vivo and in vitro study.
    Costagliola C
    Clin Physiol Biochem; 1990; 8(4):204-10. PubMed ID: 2078922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress markers in pre-uremic patients.
    Annuk M; Fellström B; Akerblom O; Zilmer K; Vihalemm T; Zilmer M
    Clin Nephrol; 2001 Oct; 56(4):308-14. PubMed ID: 11680661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth.
    Frosali S; Di Simplicio P; Perrone S; Di Giuseppe D; Longini M; Tanganelli D; Buonocore G
    Biol Neonate; 2004; 85(3):188-94. PubMed ID: 14707431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte redox state in uremic anemia: effects of hemodialysis and relevance of glutathione metabolism.
    Canestrari F; Galli F; Giorgini A; Albertini MC; Galiotta P; Pascucci M; Bossù M
    Acta Haematol; 1994; 91(4):187-93. PubMed ID: 7976116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte susceptibility to oxidative stress in chronic renal failure patients under different substitutive treatments.
    Lucchi L; Bergamini S; Iannone A; Perrone S; Stipo L; Olmeda F; Caruso F; Tomasi A; Albertazzi A
    Artif Organs; 2005 Jan; 29(1):67-72. PubMed ID: 15644086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic human diseases as oxidative risk factors in cataractogenesis. I. Diabetes.
    Costagliola C; Iuliano G; Menzione M; Nesti A; Simonelli F; Rinaldi E
    Ophthalmic Res; 1988; 20(5):308-16. PubMed ID: 3186203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glutathione on red blood cell intracellular magnesium: relation to glucose metabolism.
    Barbagallo M; Dominguez LJ; Tagliamonte MR; Resnick LM; Paolisso G
    Hypertension; 1999 Jul; 34(1):76-82. PubMed ID: 10406827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: evidence for nitrite-induced GSH oxidation to GSSG.
    Michaelsen JT; Dehnert S; Giustarini D; Beckmann B; Tsikas D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3405-17. PubMed ID: 19665947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients.
    Canestrari F; Buoncristiani U; Galli F; Giorgini A; Albertini MC; Carobi C; Pascucci M; Bossù M
    Clin Chim Acta; 1995 Jan; 234(1-2):127-36. PubMed ID: 7758212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione peroxidase activity and reduced glutathione content in erythrocytes of patients with chronic renal failure.
    Seth RK; Saini AS; Aggarwal SK
    Scand J Haematol; 1985 Aug; 35(2):201-4. PubMed ID: 4048867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients.
    Bravi MC; Pietrangeli P; Laurenti O; Basili S; Cassone-Faldetta M; Ferri C; De Mattia G
    Metabolism; 1997 Oct; 46(10):1194-8. PubMed ID: 9322806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anemia and chronic renal failure: a therapeutical approach by reduced glutathione parenteral administration.
    Costagliola C; Romano L; Scibelli G; de Vincentiis A; Sorice P; Di Benedetto A
    Nephron; 1992; 61(4):404-8. PubMed ID: 1501736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of glucose-6-phosphate dehydroxygenase and glutathione enzymes in red blood cells in patients with haemoblastoses.
    Kumerova A; Silova A; Lece A; Petuchov V
    Mater Med Pol; 1995; 27(1):7-9. PubMed ID: 8569275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione metabolism in red cell aging.
    Imanishi H; Nakai T; Abe T; Takino T
    Mech Ageing Dev; 1985 Oct; 32(1):57-62. PubMed ID: 3012219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of glutathione from erythrocytes and other markers of oxidative stress in carbon monoxide poisoning.
    Thom SR; Kang M; Fisher D; Ischiropoulos H
    J Appl Physiol (1985); 1997 May; 82(5):1424-32. PubMed ID: 9134888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic exposure to xenobiotic pollution leads to significantly higher total glutathione and lower reduced to oxidized glutathione ratio in red blood cells of children with autism.
    Faber S; Fahrenholz T; Wolle MM; Kern JC; Pamuku M; Miller L; Jamrom J; Skip Kingston HM
    Free Radic Biol Med; 2019 Apr; 134():666-677. PubMed ID: 30763613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of renal failure and renal replacement therapy on the activity of erythrocyte sodium-proton exchanger].
    Kwiatkowska E
    Ann Acad Med Stetin; 2004; 50(1):25-33. PubMed ID: 16871741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.