These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27102686)

  • 1. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products.
    Kidwell NM; Li H; Wang X; Bowman JM; Lester MI
    Nat Chem; 2016 May; 8(5):509-14. PubMed ID: 27102686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Pathways for Dissociation of Highly Energized syn-CH3CHOO to OH Plus Vinoxy.
    Wang X; Bowman JM
    J Phys Chem Lett; 2016 Sep; 7(17):3359-64. PubMed ID: 27513186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity map imaging of OH radical products from IR activated (CH3)2COO Criegee intermediates.
    Li H; Kidwell NM; Wang X; Bowman JM; Lester MI
    J Chem Phys; 2016 Sep; 145(10):104307. PubMed ID: 27634260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared-driven unimolecular reaction of CH₃CHOO Criegee intermediates to OH radical products.
    Liu F; Beames JM; Petit AS; McCoy AB; Lester MI
    Science; 2014 Sep; 345(6204):1596-8. PubMed ID: 25258077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates.
    Liu F; Beames JM; Lester MI
    J Chem Phys; 2014 Dec; 141(23):234312. PubMed ID: 25527940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products.
    Fang Y; Liu F; Klippenstein SJ; Lester MI
    J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep tunneling in the unimolecular decay of CH
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.
    Green AM; Barber VP; Fang Y; Klippenstein SJ; Lester MI
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12372-12377. PubMed ID: 29109292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CH Stretch Activation of CH
    Barber VP; Pandit S; Esposito VJ; McCoy AB; Lester MI
    J Phys Chem A; 2019 Apr; 123(13):2559-2569. PubMed ID: 30840823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roaming in the Unimolecular Decay of
    Liu T; Lester MI
    J Phys Chem A; 2023 Dec; 127(51):10817-10827. PubMed ID: 38109698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The states that hide in the shadows: the potential role of conical intersections in the ground state unimolecular decay of a Criegee intermediate.
    Marchetti B; Esposito VJ; Bush RE; Karsili TNV
    Phys Chem Chem Phys; 2021 Dec; 24(1):532-540. PubMed ID: 34904596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production.
    Barber VP; Pandit S; Green AM; Trongsiriwat N; Walsh PJ; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2018 Aug; 140(34):10866-10880. PubMed ID: 30074392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high angular momentum on the unimolecular dissociation of CD2CD2OH: theory and comparisons with experiment.
    McKown BG; Ceriotti M; Womack CC; Kamarchik E; Butler LJ; Bowman JM
    J Phys Chem A; 2013 Oct; 117(42):10951-63. PubMed ID: 24124756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates.
    Vansco MF; Caravan RL; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Khan MAH; Shallcross DE; Taatjes CA; Lester MI
    J Phys Chem A; 2020 May; 124(18):3542-3554. PubMed ID: 32255634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV Photodissociation Dynamics of the CH3CHOO Criegee Intermediate: Action Spectroscopy and Velocity Map Imaging of O-Atom Products.
    Li H; Fang Y; Kidwell NM; Beames JM; Lester MI
    J Phys Chem A; 2015 Jul; 119(30):8328-37. PubMed ID: 26192017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions.
    Liu T; Elliott SN; Zou M; Vansco MF; Sojdak CA; Markus CR; Almeida R; Au K; Sheps L; Osborn DL; Winiberg FAF; Percival CJ; Taatjes CA; Caravan RL; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2023 Sep; 145(35):19405-19420. PubMed ID: 37623926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.