BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2710285)

  • 1. [Relationship between directions of cerebellar retractions and cochlear and vestibular nerve injuries].
    Sekiya T; Iwabuchi T; Manabe H
    No Shinkei Geka; 1989 Jan; 17(1):41-9. PubMed ID: 2710285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Postoperative facial and vestibular nerve palsy: experimental study of its pathophysiological mechanisms].
    Sekiya T; Okabe S; Hatayama T; Iwabuchi T; Takiguchi M
    No To Shinkei; 1990 Feb; 42(2):113-9. PubMed ID: 2357413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cochlear nerve injuries caused by manipulations in cerebellopontine angle: Part II. An electrophysiological and morphological study in rhesus monkeys].
    Sekiya T; Møller AR; Jannetta PJ
    No Shinkei Geka; 1988; 16(5 Suppl):671-6. PubMed ID: 3260998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of vestibular and facial nerve injury following cerebellopontine angle operations.
    Sekiya T; Iwabuchi T; Okabe S
    Acta Neurochir (Wien); 1990; 102(3-4):108-13. PubMed ID: 2336976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cochlear nerve injuries caused by manipulations in cerebellopontine angle: Part I. Electrophysiological and morphological study in dogs].
    Sekiya T; Møller AR; Jannetta PJ
    No Shinkei Geka; 1988 Apr; 16(4):359-65. PubMed ID: 3260354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear nerve injuries caused by cerebellopontine angle manipulations. An electrophysiological and morphological study in dogs.
    Sekiya T; Møller AR
    J Neurosurg; 1987 Aug; 67(2):244-9. PubMed ID: 3496429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cerebellar retractions on the cochlear nerve: an experimental study on rhesus monkeys.
    Sekiya T; Møller AR
    Acta Neurochir (Wien); 1988; 90(1-2):45-52. PubMed ID: 3257838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pathophysiology of cochlear nerve injury incurred through surgical manipulation in the cerebellopontine angle. Scanning electron microscopic observations].
    Sekiya T; Okabe S; Iwabuchi T
    Neurol Med Chir (Tokyo); 1989 Feb; 29(2):77-83. PubMed ID: 2475808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterioration of auditory evoked potentials during cerebellopontine angle manipulations. An interpretation based on an experimental model in dogs.
    Sekiya T; Iwabuchi T; Kamata S; Ishida T
    J Neurosurg; 1985 Oct; 63(4):598-607. PubMed ID: 3875697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selective injury of the vestibular and facial nerves following microvascular decompression procedures for hemifacial spasm: A case report].
    Sekiya T; Suzuki S; Iwabuchi T; Takahashi T; Fujiwara F; Yasuda H
    No Shinkei Geka; 1990 Jul; 18(7):647-51. PubMed ID: 2395521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage of the peripheral auditory system after operations in the cerebellopontine angle. A scanning electron-microscopic observation in dogs.
    Sekiya T; Okabe S; Iwabuchi T
    Surg Neurol; 1988 Aug; 30(2):117-24. PubMed ID: 3261047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrophysiological identification of the cochlear and vestibular nerves in the cerebellopontine angle: experimental study and clinical implication].
    Sekiya T; Okabe S; Iwabuchi T; Ottomo M
    No Shinkei Geka; 1992 Sep; 20(9):947-53. PubMed ID: 1407359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo quantifiable model of cochlear neuronal degeneration induced by central process injury.
    Sekiya T; Hatayama T; Shimamura N; Suzuki S
    Exp Neurol; 2000 Feb; 161(2):490-502. PubMed ID: 10686071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avulsion rupture of the internal auditory artery during operations in the cerebellopontine angle: a study in monkeys.
    Sekiya T; Møller AR
    Neurosurgery; 1987 Nov; 21(5):631-7. PubMed ID: 3501074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents.
    Bäurle J; Vogten H; Grüsser-Cornehls U
    J Comp Neurol; 1998 Dec; 402(1):111-28. PubMed ID: 9831049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla.
    Altman J; Bayer SA
    J Comp Neurol; 1980 Dec; 194(4):877-904. PubMed ID: 7204645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency specific hearing improvement in microvascular decompression of the cochlear nerve.
    De Ridder D; Ryu H; De Mulder G; Van de Heyning P; Verlooy J; Møller A
    Acta Neurochir (Wien); 2005 May; 147(5):495-501; discusssion 501. PubMed ID: 15770351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiologic intraoperative monitoring: I. Auditory function.
    Kileny PR; Niparko JK; Shepard NT; Kemink JL
    Am J Otol; 1988 Dec; 9 Suppl():17-24. PubMed ID: 3059812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of the auditory system after cerebellopontine angle manipulations.
    Sekiya T; Iwabuchi T; Andoh A; Kamata S
    Neurosurgery; 1983 Jan; 12(1):80-5. PubMed ID: 6600820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.