These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27102899)

  • 1. Conformational stabilities of iminoallantoin and its base pairs in DNA: implications for mutagenicity.
    Jena NR; Bansal M; Mishra PC
    Phys Chem Chem Phys; 2016 May; 18(18):12774-83. PubMed ID: 27102899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The R- and S-diastereoisomeric effects on the guanidinohydantoin-induced mutations in DNA.
    Jena NR; Gaur V; Mishra PC
    Phys Chem Chem Phys; 2015 Jul; 17(27):18111-20. PubMed ID: 26099851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA.
    Zeng T; Fleming AM; Ding Y; Ren H; White HS; Burrows CJ
    J Org Chem; 2018 Apr; 83(7):3973-3978. PubMed ID: 29490132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(5):925-45. PubMed ID: 24842163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.
    Suzuki M; Kino K; Morikawa M; Kobayashi T; Komori R; Miyazawa H
    Molecules; 2012 Jun; 17(6):6705-15. PubMed ID: 22728364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculating distortions of short DNA duplexes with base pairing between an oxidatively damaged guanine and a guanine.
    Suzuki M; Kino K; Morikawa M; Kobayashi T; Miyazawa H
    Molecules; 2014 Jul; 19(8):11030-44. PubMed ID: 25072203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model.
    Luo W; Muller JG; Rachlin EM; Burrows CJ
    Chem Res Toxicol; 2001 Jul; 14(7):927-38. PubMed ID: 11453741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Dependent Equilibrium between 5-Guanidinohydantoin and Iminoallantoin Affects Nucleotide Insertion Opposite the DNA Lesion.
    Zhu J; Fleming AM; Orendt AM; Burrows CJ
    J Org Chem; 2016 Jan; 81(2):351-9. PubMed ID: 26582419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2013; 31(8):913-36. PubMed ID: 22962845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is FapyG mutagenic?: Evidence from the DFT study.
    Jena NR; Mishra PC
    Chemphyschem; 2013 Oct; 14(14):3263-70. PubMed ID: 23934915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics.
    Behera B; Das P; Jena NR
    J Phys Chem B; 2019 Aug; 123(31):6728-6739. PubMed ID: 31290661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts.
    Kornyushyna O; Burrows CJ
    Biochemistry; 2003 Nov; 42(44):13008-18. PubMed ID: 14596616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg.
    Krishnamurthy N; Muller JG; Burrows CJ; David SS
    Biochemistry; 2007 Aug; 46(33):9355-65. PubMed ID: 17655276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen.
    Perlow RA; Broyde S
    J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches?
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(11):2297-315. PubMed ID: 25932960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Products of Oxidative Guanine Damage Form Base Pairs with Guanine.
    Kino K; Kawada T; Hirao-Suzuki M; Morikawa M; Miyazawa H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.