BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27103189)

  • 1. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.
    deRonde BM; Posey ND; Otter R; Caffrey LM; Minter LM; Tew GN
    Biomacromolecules; 2016 Jun; 17(6):1969-77. PubMed ID: 27103189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.
    Caffrey LM; deRonde BM; Minter LM; Tew GN
    Biomacromolecules; 2016 Oct; 17(10):3205-3212. PubMed ID: 27599388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Guanidinium-Rich Protein Mimics for Efficient siRNA Delivery into Human T Cells.
    deRonde BM; Torres JA; Minter LM; Tew GN
    Biomacromolecules; 2015 Oct; 16(10):3172-9. PubMed ID: 26324222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
    Sarapas JM; Backlund CM; deRonde BM; Minter LM; Tew GN
    Chemistry; 2017 May; 23(28):6858-6863. PubMed ID: 28370636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.
    Ong ZY; Yang C; Cheng W; Voo ZX; Chin W; Hedrick JL; Yang YY
    Acta Biomater; 2017 May; 54():201-211. PubMed ID: 28323177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relating structure and internalization for ROMP-based protein mimics.
    Backlund CM; Takeuchi T; Futaki S; Tew GN
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1443-50. PubMed ID: 27039278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcohol-containing protein transduction domain mimics.
    Koch KC; Bizmark TM; Tew GN
    J Control Release; 2024 Jan; 365():950-956. PubMed ID: 38065415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs).
    Lis M; Dorner F; Tew GN; Lienkamp K
    Langmuir; 2016 Jun; 32(23):5946-54. PubMed ID: 27182683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of sequence specific hydrophobicity in synthetic protein transduction domain mimics.
    Sgolastra F; Minter LM; Osborne BA; Tew GN
    Biomacromolecules; 2014 Mar; 15(3):812-20. PubMed ID: 24506414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core.
    Kim HJ; Miyata K; Nomoto T; Zheng M; Kim A; Liu X; Cabral H; Christie RJ; Nishiyama N; Kataoka K
    Biomaterials; 2014 May; 35(15):4548-56. PubMed ID: 24613051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery.
    Segura T; Hubbell JA
    Bioconjug Chem; 2007; 18(3):736-45. PubMed ID: 17358044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery.
    Posey ND; Hango CR; Minter LM; Tew GN
    Bioconjug Chem; 2018 Aug; 29(8):2679-2690. PubMed ID: 30080401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery.
    Qi R; Liu S; Chen J; Xiao H; Yan L; Huang Y; Jing X
    J Control Release; 2012 Apr; 159(2):251-60. PubMed ID: 22285552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel protein transduction domain mimics as nonviral delivery vectors for siRNA targeting NOTCH1 in primary human T cells.
    Tezgel AÖ; Gonzalez-Perez G; Telfer JC; Osborne BA; Minter LM; Tew GN
    Mol Ther; 2013 Jan; 21(1):201-9. PubMed ID: 23070119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel endosomolytic diblock copolymer for siRNA delivery.
    Convertine AJ; Benoit DS; Duvall CL; Hoffman AS; Stayton PS
    J Control Release; 2009 Feb; 133(3):221-9. PubMed ID: 18973780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.
    Tan Z; Dhande YK; Reineke TM
    Bioconjug Chem; 2017 Dec; 28(12):2985-2997. PubMed ID: 29193962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency.
    Hinton TM; Guerrero-Sanchez C; Graham JE; Le T; Muir BW; Shi S; Tizard ML; Gunatillake PA; McLean KM; Thang SH
    Biomaterials; 2012 Oct; 33(30):7631-42. PubMed ID: 22831854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Hydrophobic Block Length of PTDMs Promotes Protein Internalization.
    Backlund CM; Sgolastra F; Otter R; Minter L; Takeuchi T; Futaki S; Tew GN
    Polym Chem; 2016 Dec; 7(48):7514-7521. PubMed ID: 29093759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.
    Sun TM; Du JZ; Yan LF; Mao HQ; Wang J
    Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elaboration on the Distribution of Hydrophobic Segments in the Chains of Amphiphilic Cationic Polymers for Small Interfering RNA Delivery.
    Wang C; Du L; Zhou J; Meng L; Cheng Q; Wang C; Wang X; Zhao D; Huang Y; Zheng S; Cao H; Zhang J; Deng L; Liang Z; Dong A
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32463-32474. PubMed ID: 28862422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.