These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 27103309)
1. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. Liu J; Liu J; Chen A; Ji M; Chen J; Yang X; Gu M; Qu H; Xu G Mycorrhiza; 2016 Oct; 26(7):645-56. PubMed ID: 27103309 [TBL] [Abstract][Full Text] [Related]
2. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196 [TBL] [Abstract][Full Text] [Related]
3. Three cis-Regulatory Motifs, AuxRE, MYCRS1 and MYCRS2, are Required for Modulating the Auxin- and Mycorrhiza-Responsive Expression of a Tomato GH3 Gene. Chen X; Liao D; Yang X; Ji M; Wang S; Gu M; Chen A; Xu G Plant Cell Physiol; 2017 Apr; 58(4):770-778. PubMed ID: 28339724 [TBL] [Abstract][Full Text] [Related]
4. A mycorrhiza-specific H Liu J; Chen J; Xie K; Tian Y; Yan A; Liu J; Huang Y; Wang S; Zhu Y; Chen A; Xu G Plant Cell Environ; 2020 Apr; 43(4):1069-1083. PubMed ID: 31899547 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. Chen A; Chen X; Wang H; Liao D; Gu M; Qu H; Sun S; Xu G BMC Plant Biol; 2014 Mar; 14():61. PubMed ID: 24618087 [TBL] [Abstract][Full Text] [Related]
6. Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. Molinero-Rosales N; Martín-Rodríguez JÁ; Ho-Plágaro T; García-Garrido JM J Plant Physiol; 2019 Jun; 237():95-103. PubMed ID: 31051335 [TBL] [Abstract][Full Text] [Related]
9. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Liu J; Liu J; Liu J; Cui M; Huang Y; Tian Y; Chen A; Xu G Plant Physiol; 2019 May; 180(1):465-479. PubMed ID: 30760639 [TBL] [Abstract][Full Text] [Related]
10. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. Bitterlich M; Krügel U; Boldt-Burisch K; Franken P; Kühn C Plant J; 2014 Jun; 78(5):877-89. PubMed ID: 24654931 [TBL] [Abstract][Full Text] [Related]
11. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. León-Morcillo RJ; Angel J; Martín-Rodríguez ; Vierheilig H; Ocampo JA; García-Garrido JM J Exp Bot; 2012 Jun; 63(10):3545-58. PubMed ID: 22442425 [TBL] [Abstract][Full Text] [Related]
12. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. Schaarschmidt S; Roitsch T; Hause B J Exp Bot; 2006; 57(15):4015-23. PubMed ID: 17050639 [TBL] [Abstract][Full Text] [Related]
13. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. Buendia L; Wang T; Girardin A; Lefebvre B New Phytol; 2016 Apr; 210(1):184-95. PubMed ID: 26612325 [TBL] [Abstract][Full Text] [Related]
14. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Nagy R; Karandashov V; Chague V; Kalinkevich K; Tamasloukht M; Xu G; Jakobsen I; Levy AA; Amrhein N; Bucher M Plant J; 2005 Apr; 42(2):236-50. PubMed ID: 15807785 [TBL] [Abstract][Full Text] [Related]
15. Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants. Rosewarne GM; Smith FA; Schachtman DP; Smith SE Mycorrhiza; 2007 May; 17(3):249-258. PubMed ID: 17216501 [TBL] [Abstract][Full Text] [Related]
16. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. Favre P; Bapaume L; Bossolini E; Delorenzi M; Falquet L; Reinhardt D BMC Plant Biol; 2014 Dec; 14():333. PubMed ID: 25465219 [TBL] [Abstract][Full Text] [Related]
17. Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. Chen A; Gu M; Sun S; Zhu L; Hong S; Xu G New Phytol; 2011 Mar; 189(4):1157-1169. PubMed ID: 21106037 [TBL] [Abstract][Full Text] [Related]
18. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Gianinazzi-Pearson V; Arnould C; Oufattole M; Arango M; Gianinazzi S Planta; 2000 Oct; 211(5):609-13. PubMed ID: 11089672 [TBL] [Abstract][Full Text] [Related]
19. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954 [TBL] [Abstract][Full Text] [Related]
20. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Drissner D; Kunze G; Callewaert N; Gehrig P; Tamasloukht M; Boller T; Felix G; Amrhein N; Bucher M Science; 2007 Oct; 318(5848):265-8. PubMed ID: 17932296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]