BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27103653)

  • 1. Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration.
    Jeong SM; Kim SO; DeLorey DS; Babb TG; Levine BD; Zhang R
    J Appl Physiol (1985); 2016 Jun; 120(12):1434-41. PubMed ID: 27103653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing.
    Claassen JA; Zhang R; Fu Q; Witkowski S; Levine BD
    J Appl Physiol (1985); 2007 Mar; 102(3):870-7. PubMed ID: 17110510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.
    Brothers RM; Lucas RA; Zhu YS; Crandall CG; Zhang R
    Exp Physiol; 2014 Nov; 99(11):1499-510. PubMed ID: 25172891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral Vasomotor Reactivity in Amnestic Mild Cognitive Impairment.
    Tomoto T; Tarumi T; Chen J; Pasha EP; Cullum CM; Zhang R
    J Alzheimers Dis; 2020; 77(1):191-202. PubMed ID: 32716360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The critical closing pressure contribution to dynamic cerebral autoregulation in humans: influence of arterial partial pressure of CO
    Panerai RB; Minhas JS; Llwyd O; Salinet ASM; Katsogridakis E; Maggio P; Robinson TG
    J Physiol; 2020 Dec; 598(24):5673-5685. PubMed ID: 32975820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The upper frequency limit of dynamic cerebral autoregulation.
    Panerai RB; Robinson TG; Minhas JS
    J Physiol; 2019 Dec; 597(24):5821-5833. PubMed ID: 31671473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index.
    Reinhard M; Roth M; Müller T; Czosnyka M; Timmer J; Hetzel A
    Stroke; 2003 Sep; 34(9):2138-44. PubMed ID: 12920261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of cardio-respiratory signals and cerebral autoregulation based on CO2 reactivity with healthy subjects and Parkinson's patients.
    Lin SL; Liao AY; Yeh SJ; Lin JY
    Technol Health Care; 2015; 24 Suppl 1():S195-203. PubMed ID: 26684566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral vasomotor reactivity during hypo- and hypercapnia across the adult lifespan.
    Tomoto T; Riley J; Turner M; Zhang R; Tarumi T
    J Cereb Blood Flow Metab; 2020 Mar; 40(3):600-610. PubMed ID: 30764704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation.
    Diehl RR; Linden D; Lücke D; Berlit P
    Stroke; 1995 Oct; 26(10):1801-4. PubMed ID: 7570728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans.
    Ainslie PN; Lucas SJ; Fan JL; Thomas KN; Cotter JD; Tzeng YC; Burgess KR
    J Appl Physiol (1985); 2012 Oct; 113(7):1058-67. PubMed ID: 22837165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired dynamic cerebral autoregulation in trained breath-hold divers.
    Moir ME; Klassen SA; Al-Khazraji BK; Woehrle E; Smith SO; Matushewski BJ; Kozić D; Dujić Ž; Barak OF; Shoemaker JK
    J Appl Physiol (1985); 2019 Jun; 126(6):1694-1700. PubMed ID: 31070952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the frequency domain: the multiple and partial coherence of cerebral blood flow velocity in the assessment of dynamic cerebral autoregulation.
    Katsogridakis E; Simpson DM; Bush G; Fan L; Birch AA; Allen R; Potter JF; Panerai RB
    Physiol Meas; 2016 Jul; 37(7):1056-73. PubMed ID: 27244196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does respiratory drive modify the cerebral vascular response to changes in end-tidal carbon dioxide?
    Ogoh S; Suzuki K; Washio T; Tamiya K; Saito S; Bailey TG; Shibata S; Ito G; Miyamoto T
    Exp Physiol; 2019 Sep; 104(9):1363-1370. PubMed ID: 31264258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-year aerobic exercise altered cerebral vasomotor reactivity in mild cognitive impairment.
    Tomoto T; Tarumi T; Chen JN; Hynan LS; Cullum CM; Zhang R
    J Appl Physiol (1985); 2021 Jul; 131(1):119-130. PubMed ID: 34013755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons.
    Brys M; Brown CM; Marthol H; Franta R; Hilz MJ
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1048-54. PubMed ID: 12915389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation.
    Nishimura N; Iwasaki K; Ogawa Y; Shibata S
    Aviat Space Environ Med; 2007 Dec; 78(12):1121-7. PubMed ID: 18064916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.