These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27104113)
1. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. Xiao Y; Gu X; Yin S; Shao J; Cui Y; Zhang Q; Niu Y Springerplus; 2016; 5():425. PubMed ID: 27104113 [TBL] [Abstract][Full Text] [Related]
2. Improvement of water table interpolation and groundwater storage volume using fuzzy computations. Masoumi Z; Rezaei A; Maleki J Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353 [TBL] [Abstract][Full Text] [Related]
3. Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods. Arslan H Environ Monit Assess; 2014 Aug; 186(8):5123-34. PubMed ID: 24729182 [TBL] [Abstract][Full Text] [Related]
4. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination. Fischer A; Lee MK; Ojeda AS; Rogers SR J Environ Manage; 2021 Feb; 280():111683. PubMed ID: 33246756 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya, Turkey. Cay T; Uyan M Water Environ Res; 2009 Dec; 81(12):2460-70. PubMed ID: 20099631 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Rostami AA; Isazadeh M; Shahabi M; Nozari H Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709 [TBL] [Abstract][Full Text] [Related]
7. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Mirzaei R; Sakizadeh M Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732 [TBL] [Abstract][Full Text] [Related]
8. Optimization of interpolation method for nitrate pollution in groundwater and assessing vulnerability with IPNOA and IPNOC method in Qazvin plain. Kazemi E; Karyab H; Emamjome MM J Environ Health Sci Eng; 2017; 15():23. PubMed ID: 29201382 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Gong G; Mattevada S; O'Bryant SE Environ Res; 2014 Apr; 130():59-69. PubMed ID: 24559533 [TBL] [Abstract][Full Text] [Related]
10. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Arslan H; Ayyildiz Turan N Environ Monit Assess; 2015 Aug; 187(8):516. PubMed ID: 26202813 [TBL] [Abstract][Full Text] [Related]
11. Geostatistical analysis of spatial and temporal variations of groundwater level. Ahmadi SH; Sedghamiz A Environ Monit Assess; 2007 Jun; 129(1-3):277-94. PubMed ID: 17180432 [TBL] [Abstract][Full Text] [Related]
12. The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District, Beijing, China. Zhai Y; Lei Y; Zhou J; Li M; Wang J; Teng Y Environ Monit Assess; 2015 Feb; 187(2):43. PubMed ID: 25637387 [TBL] [Abstract][Full Text] [Related]
13. Impacts of urban land use on the spatial distribution of groundwater pollution, Harbin City, Northeast China. Jia Z; Bian J; Wang Y J Contam Hydrol; 2018 Aug; 215():29-38. PubMed ID: 30082036 [TBL] [Abstract][Full Text] [Related]
14. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China. Li J; Li F; Liu Q; Suzuki Y Environ Sci Process Impacts; 2014 Dec; 16(12):2764-73. PubMed ID: 25354221 [TBL] [Abstract][Full Text] [Related]
16. Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas. Michael R; O'Lenick CR; Monaghan A; Wilhelmi O; Wiedinmyer C; Hayden M; Estes M J Expo Sci Environ Epidemiol; 2019 Oct; 29(6):806-820. PubMed ID: 30451934 [TBL] [Abstract][Full Text] [Related]
17. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Varouchakis EA; Hristopulos DT Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559 [TBL] [Abstract][Full Text] [Related]
18. Mapping human health risk by geostatistical method: a case study of mercury in drinking groundwater resource of the central ganga alluvial plain, northern India. Raju A; Singh A; Srivastava N; Singh S; Jigyasu DK; Singh M Environ Monit Assess; 2019 Jun; 191(Suppl 2):298. PubMed ID: 31254077 [TBL] [Abstract][Full Text] [Related]
19. [Application of different spatial interpolation methods in sodium intake estimation]. Fang K; Fang Y; Lian Y; Hu M; He Y Wei Sheng Yan Jiu; 2021 Mar; 50(2):217-222. PubMed ID: 33985624 [TBL] [Abstract][Full Text] [Related]
20. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping. Fazeli Sangani M; Namdar Khojasteh D; Owens G Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]