BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27104521)

  • 1. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders.
    Coumans JV; Palanisamy SK; McFarlane J; Moens PD
    Int J Mol Sci; 2016 Apr; 17(4):. PubMed ID: 27104521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics for investigating psychiatric disorders.
    Filiou MD; Turck CW; Martins-de-Souza D
    Proteomics Clin Appl; 2011 Feb; 5(1-2):38-49. PubMed ID: 21280236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale.
    Sobczyk GJ; Wang J; Weijer CJ
    Nat Commun; 2014 Feb; 5():3319. PubMed ID: 24569529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.
    Wesseling H; Guest PC; Lago SG; Bahn S
    Int J Neuropsychopharmacol; 2014 Aug; 17(8):1327-41. PubMed ID: 24524332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites.
    Gómez de León CT; Díaz Martín RD; Mendoza Hernández G; González Pozos S; Ambrosio JR; Mondragón Flores R
    J Proteomics; 2014 Dec; 111():86-99. PubMed ID: 24662527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton.
    Rinschen MM; Hoppe AK; Grahammer F; Kann M; Völker LA; Schurek EM; Binz J; Höhne M; Demir F; Malisic M; Huber TB; Kurschat C; Kizhakkedathu JN; Schermer B; Huesgen PF; Benzing T
    J Am Soc Nephrol; 2017 Oct; 28(10):2867-2878. PubMed ID: 28724775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration-responsive cytoskeleton proteome of rice reveals reprograming of key molecular pathways to mediate metabolic adaptation and cell survival.
    Kumar S; Chakraborty S; Chakraborty N
    Plant Physiol Biochem; 2024 Feb; 207():108359. PubMed ID: 38237420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Procedures for the biochemical enrichment and proteomic analysis of the cytoskeletome.
    Choi S; Kelber J; Jiang X; Strnadel J; Fujimura K; Pasillas M; Coppinger J; Klemke R
    Anal Biochem; 2014 Feb; 446():102-7. PubMed ID: 24161902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of filament polymerization dynamics in cytoskeletal networks.
    Caldas P; Radler P; Sommer C; Loose M
    Methods Cell Biol; 2020; 158():145-161. PubMed ID: 32423647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms.
    Radulovic M; Godovac-Zimmermann J
    Expert Rev Proteomics; 2011 Feb; 8(1):117-26. PubMed ID: 21329431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychiatric disorders biochemical pathways unraveled by human brain proteomics.
    Saia-Cereda VM; Cassoli JS; Martins-de-Souza D; Nascimento JM
    Eur Arch Psychiatry Clin Neurosci; 2017 Feb; 267(1):3-17. PubMed ID: 27377417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modern proteomic strategies in the study of complex neuropsychiatric disorders.
    Rohlff C; Hollis K
    Biol Psychiatry; 2003 May; 53(10):847-53. PubMed ID: 12742671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.
    Shah AD; Inder KL; Shah AK; Cristino AS; McKie AB; Gabra H; Davis MJ; Hill MM
    J Proteome Res; 2016 Oct; 15(10):3451-3462. PubMed ID: 27384440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischaemia and the myocyte cytoskeleton: review and speculation.
    Ganote C; Armstrong S
    Cardiovasc Res; 1993 Aug; 27(8):1387-403. PubMed ID: 8221792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down label-free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers.
    Maltman DJ; Brand S; Belau E; Paape R; Suckau D; Przyborski SA
    Proteomics; 2011 Oct; 11(20):3992-4006. PubMed ID: 21761558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells.
    Clark R; Nosie A; Walker T; Faralli JA; Filla MS; Barrett-Wilt G; Peters DM
    Mol Cell Proteomics; 2013 Jan; 12(1):194-206. PubMed ID: 23105009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of the erythrocyte membrane proteome and cytoskeleton network during storage--a possible tool to identify autologous blood transfusion.
    Nikolovski Z; De La Torre C; Chiva C; Borràs E; Andreu D; Ventura R; Segura J
    Drug Test Anal; 2012 Nov; 4(11):882-90. PubMed ID: 22544525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic research in psychiatry.
    Taurines R; Dudley E; Grassl J; Warnke A; Gerlach M; Coogan AN; Thome J
    J Psychopharmacol; 2011 Feb; 25(2):151-96. PubMed ID: 20142298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death.
    Vakifahmetoglu-Norberg H; Norberg E; Perdomo AB; Olsson M; Ciccosanti F; Orrenius S; Fimia GM; Piacentini M; Zhivotovsky B
    Cell Death Dis; 2013 Dec; 4(12):e940. PubMed ID: 24309927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.