These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27104588)

  • 1. Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: Experimental and modeling study.
    Abudi ZN; Hu Z; Xiao B; Abood AR; Rajaa N; Laghari M
    J Environ Manage; 2016 Jul; 177():213-22. PubMed ID: 27104588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate.
    Ara E; Sartaj M; Kennedy K
    Waste Manag Res; 2015 Jun; 33(6):578-87. PubMed ID: 25964293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.
    Feki E; Khoufi S; Loukil S; Sayadi S
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14717-26. PubMed ID: 25982985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.
    Chu X; Wu G; Wang J; Hu ZH
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20143-53. PubMed ID: 26300352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.
    Ara E; Sartaj M; Kennedy K
    Waste Manag Res; 2014 Dec; 32(12):1200-9. PubMed ID: 25398411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of co-substrate and thermal pretreatment on anaerobic digestion performance.
    Amiri L; Abdoli MA; Gitipour S; Madadian E
    Environ Technol; 2017 Sep; 38(18):2352-2361. PubMed ID: 27841085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study.
    Negi S; Dhar H; Hussain A; Kumar S
    Bioresour Technol; 2018 Apr; 254():139-144. PubMed ID: 29413914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor.
    Alqaralleh RM; Kennedy K; Delatolla R
    J Environ Manage; 2018 Jul; 217():416-428. PubMed ID: 29627647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates.
    Grosser A; Neczaj E; Singh BR; Almås ÅR; Brattebø H; Kacprzak M
    Environ Res; 2017 May; 155():249-260. PubMed ID: 28237904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of anaerobic digestion for contaminated rice straw inoculated with waste activated sludge.
    Xin L; Guo Z; Xiao X; Xu W; Geng R; Wang W
    Bioresour Technol; 2018 Oct; 266():45-50. PubMed ID: 29944977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge.
    Wahidunnabi AK; Eskicioglu C
    Water Res; 2014 Dec; 66():430-446. PubMed ID: 25243656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.
    Kim J; Kim H; Baek G; Lee C
    Waste Manag; 2017 Feb; 60():322-328. PubMed ID: 27751681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.
    Dai X; Duan N; Dong B; Dai L
    Waste Manag; 2013 Feb; 33(2):308-16. PubMed ID: 23177568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.
    Tandukar M; Pavlostathis SG
    Water Res; 2015 Dec; 87():432-45. PubMed ID: 25979784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of alkaline and alkaline-photocatalytic pretreatment on characteristics and biogas production of rice straw.
    Sabeeh M; Zeshan ; Liaquat R; Maryam A
    Bioresour Technol; 2020 Aug; 309():123449. PubMed ID: 32361618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydrothermal pretreatment on the mono- and co-digestion of waste activated sludge and wheat straw.
    Tian W; Chen Y; Shen Y; Zhong C; Gao M; Shi D; He Q; Gu L
    Sci Total Environ; 2020 Aug; 732():139312. PubMed ID: 32438169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The advantages of co-digestion of vegetable oil industry by-products and sewage sludge: Biogas production potential, kinetic analysis and digestate valorisation.
    Petrovič A; Zirngast K; Predikaka TC; Simonič M; Čuček L
    J Environ Manage; 2022 Sep; 318():115566. PubMed ID: 35779298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease.
    Wan C; Zhou Q; Fu G; Li Y
    Waste Manag; 2011 Aug; 31(8):1752-8. PubMed ID: 21546236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic co-digestion of sewage sludge and food waste.
    Prabhu MS; Mutnuri S
    Waste Manag Res; 2016 Apr; 34(4):307-15. PubMed ID: 26879909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of anaerobic co-digestion of sewage and brewery sludges on biogas production and sludge quality.
    Pecharaply A; Parkpian P; Annachhatre AP; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):911-23. PubMed ID: 17558772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.