BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27104661)

  • 1. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.
    Zhang Y; Liu J; Li D; Dai X; Yan F; Conlan XA; Zhou R; Barrow CJ; He J; Wang X; Yang W
    ACS Nano; 2016 May; 10(5):5096-103. PubMed ID: 27104661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunnelling current recognition through core-satellite gold nanoparticles for ultrasensitive detection of copper ions.
    Foroushani A; Zhang Y; Li D; Mathesh M; Wang H; Yan F; Barrow CJ; He J; Yang W
    Chem Commun (Camb); 2015 Feb; 51(14):2921-4. PubMed ID: 25585717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions.
    Weng Z; Wang H; Vongsvivut J; Li R; Glushenkov AM; He J; Chen Y; Barrow CJ; Yang W
    Anal Chim Acta; 2013 Nov; 803():128-34. PubMed ID: 24216206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Chiral Gold Supramolecules with Efficient Laser Absorption for Enantiospecific Recognition of Carnitine.
    Tseng YT; Chang HY; Harroun SG; Wu CW; Wei SC; Yuan Z; Chou HL; Chen CH; Huang CC; Chang HT
    Anal Chem; 2018 Jun; 90(12):7283-7291. PubMed ID: 29787232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pasteur's Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One.
    Ernst KH; Baumann S; Lutz CP; Seibel J; Zoppi L; Heinrich AJ
    Nano Lett; 2015 Aug; 15(8):5388-92. PubMed ID: 26121366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy.
    Kühnle A; Linderoth TR; Hammer B; Besenbacher F
    Nature; 2002 Feb; 415(6874):891-3. PubMed ID: 11859364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport.
    Ziv A; Shoseyov O; Karadan P; Bloom BP; Goldring S; Metzger T; Yochelis S; Waldeck DH; Yerushalmi R; Paltiel Y
    Nano Lett; 2021 Aug; 21(15):6496-6503. PubMed ID: 34297582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective recognition and ultrasensitive quantification of enantiomers.
    Xu L; Xu Z; Ma W; Liu L; Wang L; Kuang H; Xu C
    J Mater Chem B; 2013 Sep; 1(35):4478-4483. PubMed ID: 32261120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building heterogeneous core-satellite chiral assemblies for ultrasensitive toxin detection.
    Zhao X; Wu X; Xu L; Ma W; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2015 Apr; 66():554-8. PubMed ID: 25522083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanorods as Visual Sensing Platform for Chiral Recognition with Naked Eyes.
    Wang Y; Zhou X; Xu C; Jin Y; Li B
    Sci Rep; 2018 Mar; 8(1):5296. PubMed ID: 29593267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures formed by the chiral assembly of racemic mixtures of enantiomers: iodination products of elaidic and oleic acids.
    Cai Y; Bernasek SL
    J Phys Chem B; 2005 Mar; 109(10):4514-9. PubMed ID: 16851527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques.
    Raval R
    Chem Soc Rev; 2009 Mar; 38(3):707-21. PubMed ID: 19322464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality transfer from a single chiral molecule to 2D superstructures in alaninol on the Cu(100) surface.
    Contini G; Gori P; Ronci F; Zema N; Colonna S; Aschi M; Palma A; Turchini S; Catone D; Cricenti A; Prosperi T
    Langmuir; 2011 Jun; 27(12):7410-8. PubMed ID: 21604683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral Recognition of l-Gramicidine on Chiraly Methionine-Modified Au(111).
    Humblot V; Pradier CM
    J Phys Chem Lett; 2013 Jun; 4(11):1816-20. PubMed ID: 26283114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute configuration and chiral self-assembly of rubrene on Bi(111).
    Sun K; Lan M; Wang JZ
    Phys Chem Chem Phys; 2015 Oct; 17(39):26220-4. PubMed ID: 26381992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemical Recognition of Helicenes on Metal Surfaces.
    Ernst KH
    Acc Chem Res; 2016 Jun; 49(6):1182-90. PubMed ID: 27251099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).
    Barlow SM; Louafi S; Le Roux D; Williams J; Muryn C; Haq S; Raval R
    Langmuir; 2004 Aug; 20(17):7171-6. PubMed ID: 15301502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.