These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27104668)

  • 1. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies influence neural activity for feedback learning across child and adolescent development.
    Peters S; Koolschijn PC; Crone EA; Van Duijvenvoorde AC; Raijmakers ME
    Neuropsychologia; 2014 Sep; 62():365-74. PubMed ID: 25050853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometry and connectivity of the fronto-parietal verbal working memory network in development.
    Østby Y; Tamnes CK; Fjell AM; Walhovd KB
    Neuropsychologia; 2011 Dec; 49(14):3854-62. PubMed ID: 22001853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural coding of feedback learning across child and adolescent development.
    Peters S; Braams BR; Raijmakers ME; Koolschijn PC; Crone EA
    J Cogn Neurosci; 2014 Aug; 26(8):1705-20. PubMed ID: 24564463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal working memory development is related to structural maturation of frontal and parietal cortices.
    Tamnes CK; Walhovd KB; Grydeland H; Holland D; Østby Y; Dale AM; Fjell AM
    J Cogn Neurosci; 2013 Oct; 25(10):1611-23. PubMed ID: 23767921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.
    Barnes JJ; Nobre AC; Woolrich MW; Baker K; Astle DE
    J Neurosci; 2016 Aug; 36(34):9001-11. PubMed ID: 27559180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a superior frontal-intraparietal network for visuo-spatial working memory.
    Klingberg T
    Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional brain connectivity at rest changes after working memory training.
    Jolles DD; van Buchem MA; Crone EA; Rombouts SA
    Hum Brain Mapp; 2013 Feb; 34(2):396-406. PubMed ID: 22076823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks.
    Thompson TW; Waskom ML; Gabrieli JD
    J Cogn Neurosci; 2016 Apr; 28(4):575-88. PubMed ID: 26741799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW; Schneider W
    Neuroimage; 2007 Aug; 37(1):343-60. PubMed ID: 17553704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance.
    Burzynska AZ; Nagel IE; Preuschhof C; Li SC; Lindenberger U; Bäckman L; Heekeren HR
    Cereb Cortex; 2011 Oct; 21(10):2261-71. PubMed ID: 21350048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontoparietal networks involved in categorization and item working memory.
    Braunlich K; Gomez-Lavin J; Seger CA
    Neuroimage; 2015 Feb; 107():146-162. PubMed ID: 25482265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth.
    Ng CT; Huang PH; Cho YC; Lee PH; Liu YC; Chang TT
    Hum Brain Mapp; 2024 Aug; 45(11):e26777. PubMed ID: 39046114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between frontoparietal control and default networks supports social working memory and empathy.
    Xin F; Lei X
    Soc Cogn Affect Neurosci; 2015 Aug; 10(8):1144-52. PubMed ID: 25556209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting reading and mathematics from neural activity for feedback learning.
    Peters S; Van der Meulen M; Zanolie K; Crone EA
    Dev Psychol; 2017 Jan; 53(1):149-159. PubMed ID: 28026194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.