BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27104980)

  • 21. MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos.
    Okazaki K; Sagata N
    Oncogene; 1995 Mar; 10(6):1149-57. PubMed ID: 7700641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system.
    Papin C; Denouel A; Calothy G; Eychène A
    Oncogene; 1996 May; 12(10):2213-21. PubMed ID: 8668348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras.
    Hu CD; Kariya K; Tamada M; Akasaka K; Shirouzu M; Yokoyama S; Kataoka T
    J Biol Chem; 1995 Dec; 270(51):30274-7. PubMed ID: 8530446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell cycle-dependent phosphorylation of C/EBPbeta mediates oncogenic cooperativity between C/EBPbeta and H-RasV12.
    Shuman JD; Sebastian T; Kaldis P; Copeland TD; Zhu S; Smart RC; Johnson PF
    Mol Cell Biol; 2004 Sep; 24(17):7380-91. PubMed ID: 15314150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Ras works: structure of a Rap-Raf complex.
    Sprang SR
    Structure; 1995 Jul; 3(7):641-3. PubMed ID: 8591040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The RAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase Exhibits Allosteric Conformational Changes upon Binding HRAS.
    Aramini JM; Vorobiev SM; Tuberty LM; Janjua H; Campbell ET; Seetharaman J; Su M; Huang YJ; Acton TB; Xiao R; Tong L; Montelione GT
    Structure; 2015 Aug; 23(8):1382-1393. PubMed ID: 26165597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1.
    Lucas L; Penalva V; Ramírez de Molina A; Del Peso L; Lacal JC
    Int J Oncol; 2002 Sep; 21(3):477-85. PubMed ID: 12168089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raf: a strategic target for therapeutic development against cancer.
    Beeram M; Patnaik A; Rowinsky EK
    J Clin Oncol; 2005 Sep; 23(27):6771-90. PubMed ID: 16170185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.
    Mott HR; Carpenter JW; Zhong S; Ghosh S; Bell RM; Campbell SL
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8312-7. PubMed ID: 8710867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation.
    Urano T; Emkey R; Feig LA
    EMBO J; 1996 Feb; 15(4):810-6. PubMed ID: 8631302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells.
    Rosário M; Paterson HF; Marshall CJ
    EMBO J; 1999 Mar; 18(5):1270-9. PubMed ID: 10064593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of the Ras:Raf and Rap:Raf complexes.
    Zeng J; Treutlein HR; Simonson T
    Proteins; 1999 Apr; 35(1):89-100. PubMed ID: 10090289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
    Mazhab-Jafari MT; Marshall CB; Smith MJ; Gasmi-Seabrook GM; Stathopulos PB; Inagaki F; Kay LE; Neel BG; Ikura M
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6625-30. PubMed ID: 25941399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional consequences of mutations in a putative Akt phosphorylation motif of B-raf in human cancers.
    Ikenoue T; Kanai F; Hikiba Y; Tanaka Y; Imamura J; Ohta M; Jazag A; Guleng B; Asaoka Y; Tateishi K; Kawakami T; Matsumura M; Kawabe T; Omata M
    Mol Carcinog; 2005 May; 43(1):59-63. PubMed ID: 15791648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade.
    Yan C; Saleh N; Yang J; Nebhan CA; Vilgelm AE; Reddy EP; Roland JT; Johnson DB; Chen SC; Shattuck-Brandt RL; Ayers GD; Richmond A
    Mol Cancer; 2021 Jun; 20(1):85. PubMed ID: 34092233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N terminus of ASPP2 binds to Ras and enhances Ras/Raf/MEK/ERK activation to promote oncogene-induced senescence.
    Wang Z; Liu Y; Takahashi M; Van Hook K; Kampa-Schittenhelm KM; Sheppard BC; Sears RC; Stork PJ; Lopez CD
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):312-7. PubMed ID: 23248303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ras-interacting domain of Ral GDP dissociation stimulator like (RGL) reverses v-Ras-induced transformation and Raf-1 activation in NIH3T3 cells.
    Okazaki M; Kishida S; Murai H; Hinoi T; Kikuchi A
    Cancer Res; 1996 May; 56(10):2387-92. PubMed ID: 8625316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.
    Villalonga P; López-Alcalá C; Bosch M; Chiloeches A; Rocamora N; Gil J; Marais R; Marshall CJ; Bachs O; Agell N
    Mol Cell Biol; 2001 Nov; 21(21):7345-54. PubMed ID: 11585916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo.
    Block C; Janknecht R; Herrmann C; Nassar N; Wittinghofer A
    Nat Struct Biol; 1996 Mar; 3(3):244-51. PubMed ID: 8605626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between Ras proteins and their effectors.
    McCormick F; Wittinghofer A
    Curr Opin Biotechnol; 1996 Aug; 7(4):449-56. PubMed ID: 8768906
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.