These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27104998)

  • 1. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence.
    Paccard A; Van Buskirk J; Willi Y
    Am Nat; 2016 May; 187(5):667-77. PubMed ID: 27104998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary potential under heat and drought stress at the southern range edge of North American Arabidopsis lyrata.
    Heblack J; Schepers JR; Willi Y
    J Evol Biol; 2024 May; 37(5):555-565. PubMed ID: 38596851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weak impact of fine-scale landscape heterogeneity on evolutionary potential in Arabidopsis lyrata.
    Paccard A; Vance M; Willi Y
    J Evol Biol; 2013 Nov; 26(11):2331-40. PubMed ID: 23980569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1459-71. PubMed ID: 15341149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly.
    Takahashi Y; Suyama Y; Matsuki Y; Funayama R; Nakayama K; Kawata M
    Mol Ecol; 2016 Sep; 25(18):4450-60. PubMed ID: 27501054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity in G matrix structure among natural populations of Arabidopsis lyrata.
    Puentes A; Granath G; Ågren J
    Evolution; 2016 Oct; 70(10):2370-2386. PubMed ID: 27501272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latitudinal trait variation and responses to drought in Arabidopsis lyrata.
    Paccard A; Fruleux A; Willi Y
    Oecologia; 2014 Jun; 175(2):577-87. PubMed ID: 24705694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinal variation in quantitative traits but not in evolutionary potential along elevational and latitudinal gradients in the widespread Anthyllis vulneraria.
    Daco L; Colling G; Matthies D
    Am J Bot; 2024 Jun; 111(6):e16360. PubMed ID: 38888183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata.
    Riihimäki M; Podolsky R; Kuittinen H; Koelewijn H; Savolainen O
    Genetica; 2005 Feb; 123(1-2):63-74. PubMed ID: 15881681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population divergence along lines of genetic variance and covariance in the invasive plant Lythrum salicaria in eastern North America.
    Colautti RI; Barrett SC
    Evolution; 2011 Sep; 65(9):2514-29. PubMed ID: 21884053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of selection, drift and genetic variation on life-history trait divergence among insular populations of natterjack toad, Bufo calamita.
    Rogell B; Eklund M; Thörngren H; Laurila A; Höglund J
    Mol Ecol; 2010 Jun; 19(11):2229-40. PubMed ID: 20465584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata.
    Griffin PC; Willi Y
    Ecol Lett; 2014 Apr; 17(4):484-90. PubMed ID: 24428521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic covariances promote climatic adaptation in Australian Drosophila.
    Hangartner S; Lasne C; Sgrò CM; Connallon T; Monro K
    Evolution; 2020 Feb; 74(2):326-337. PubMed ID: 31432496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digest: Multivariate genetic variation constrains adaptation to environmental changes during range expansion.
    Cai H; Des Marais D
    Evolution; 2023 Oct; 77(10):2334-2335. PubMed ID: 37551957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata.
    Wos G; Willi Y
    PLoS One; 2015; 10(6):e0131808. PubMed ID: 26110428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in Arabidopsis thaliana?
    Estarague A; Vasseur F; Sartori K; Bastias CC; Cornet D; Rouan L; Beurier G; Exposito-Alonso M; Herbette S; Bresson J; Vile D; Violle C
    Ann Bot; 2022 Feb; 129(3):343-356. PubMed ID: 34918027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latitudinal variation in genetic divergence of populations and the potential for future speciation.
    Martin PR; McKay JK
    Evolution; 2004 May; 58(5):938-45. PubMed ID: 15212375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory, Ipomoea hederacea.
    Campitelli BE; Stinchcombe JR
    Mol Ecol; 2013 Feb; 22(3):552-64. PubMed ID: 23061399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect.
    Sniegula S; Golab MJ; Drobniak SM; Johansson F
    J Evol Biol; 2018 Jun; 31(6):853-865. PubMed ID: 29569290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.